帳號:guest(18.119.109.232)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):康庭絢
作者(外文):Kang, Ting Shiuan
論文名稱(中文):具穿隧介電層之金屬源極穿隧場效電晶體
論文名稱(外文):Metal Source Tunnel Field-Effect Transistors with Tunneling Dielectrics
指導教授(中文):連振炘
施君興
指導教授(外文):Lien, Chenhsin
Shih, Chun Hsing
口試委員(中文):邱福千
口試委員(外文):Chiu, Fu Chien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:102063517
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:85
中文關鍵詞:穿隧電晶體能帶間穿隧蕭特基能障穿隧金屬源極穿隧介電層
外文關鍵詞:Tunnel Field-Effect TransistorsBand-to-Band TunnelingSchottky Barrier TunnelingMetal SourceTunneling Dielectrics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:270
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現今半導體工業蓬勃發展,電晶體隨著世代的微縮演進,使功率消耗的問題日益嚴重,金氧半場效電晶體因次臨界擺幅物理限制,不適於未來的低功率操作。穿隧電晶體因藉能帶間穿隧機制進行開關操作,成為綠能元件重要發展方向。本論文探討金屬源極穿隧場效電晶體其穿隧行為物理機制與相關元件設計。採用金屬取代原本半導體作為電晶體的源極,此一元件架構能同時結合能帶間穿隧和蕭特基能障穿隧兩種傳導機制,使穿隧電晶體突破元件導通電流不足的困境。其次,此研究引入源極與通道間的穿隧介電層,此一作法有助於能帶間穿隧效應在小閘極電壓時彰顯,強化穿隧電晶體的低次臨界擺幅特性。此一研究採用二維模擬軟體進行,在模擬分析中,以非局域性模型探討元件穿隧行為。研究結果顯示,具穿隧介電層之金屬源極穿隧電晶體其導通電流可有顯著提升,並維持極低的次臨界擺幅。
Tunnel field-effect transistor (TFET) is considered as an attractive candidate for future low-power applications because of its steep subthreshold slope. However, conventional TFET transistor suffers from a low on-state current. This thesis proposes a new metal source TFET to increase the on-state current by combining the band-to-band tunneling and Schottky barrier tunneling. Two-dimensional simulations with nonlocal models were performed to examine the physical mechanism and associated design. The results show that an additional tunneling dielectric between the source and the channel can be utilized along with the metal source to ensure a high on-state current while retaining an abrupt on-off switching of TFET devices.
中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1研究背景 1
1.2電晶體微縮與瓶頸 1
1.3小次臨界擺幅元件 3
1.4動機與目標 5
1.5論文架構 6
第二章 穿隧電晶體原理與模型 15
2.1元件結構與原理 15
2.2能帶間穿隧模型 17
2.3模擬參數 21
第三章 金屬源極穿隧電晶體 33
3.1金屬半導體接面 33
3.2金屬源極穿隧電晶體 34
3.3元件設計與模擬 37
第四章 具穿隧介電層之金屬源極穿隧電晶體 54
4.1元件結構與原理 54
4.2元件設計與參數 55
4.3不同結構之穿隧電晶體的比較 58
4.4 小尺度之穿隧電晶體 59
第五章 結論 81
參考文獻 82
[1] Donald A. Neamen, “Semiconductor Physics and Device”, 3rd Edition, McGRAW. HILL, 2003.
[2] International Technology Roadmap for Semiconductors, 2011 Edition.
[3] Toshiaki Tsuchiya, Yasuhiro Sato, and Masaaki Tomizawa, “Three Mechanisms Determining Short-Channel Effects in Fully-Depleted SOI MOSFET's”, IEEE Trans. Electron Devices, Vol.45, No.5, pp.1116-1121, 1998.
[4] Ben G. Streetman, and Sanjay Kumar Banerjee , “Solid State Electronic Devices”, 6th Edition, Pearson, pp.217-224, pp.299-311, 2006.
[5] Sebastian Anthony, “7nm, 5nm, 3nm: The new materials and transistors that will take us to the limits of Moore’s law,” Extreme Tech, 2013.
[6] P Rajani H.P., and Srimannarayan Kulkarni, “Novel Sleep Transistor Techniques for Low Leakage Power Peripheral Circuits,” VLSICS, Vol.3, No.4,pp.81, 2012.
[7] Adrian M. Ionescu, and Heike Riel, “Tunnel Field Effect Transistors as Energy Efficient Electronic Switches,” Nature, Vol.479, pp.329-337, 2011.
[8] Kin P. Cheung, “On the 60 mV/dec @300 K Limit for MOSFET Subthreshold Swing,” IEEE VLSI-TSA, pp.72-73, 2010.
[9] Kailash Gopalakrishnan, Peter B. Griffin, and James D. Plummer, “Impact Ionization MOS (I-MOS)—Part I: Device and Circuit Simulations,” IEEE Trans. Electron Devices, Vol.52, No.1, pp.69-76, 2005.
[10] E.-H. Toh, G. Wang, L. Chan, G.-Q. Lo, G. Samudra, and Y.-C. Yeo, “Strain and Materials Engineering for the I-MOS Transistor With an Elevated Impact Ionization Region,” IEEE Trans. Electron Devices, Vol.54, No.10, pp.2778-2785, 2007.
[11] Gustau Catalan, David Jiménez and Alexei Gruverman, “Ferroelectrics: Negative capacitance detected,” Nature Materials, Vol.14, pp137-139, 2015.
[12] Kathy Boucart and Adrian Mihai Ionescu, “Double-Gate Tunnel FET With High-κ Gate Dielectric,” IEEE Trans. Electron Devices, Vol.54, No.7, pp1725-1733, 2007.
[13] Alan Seabaugh, “The Tunneling Transistor,” IEEE Spectrum, Vol.50, No.10, pp35-62, 2013.
[14] Vinay Saripalli, “Device and Architecture Co-design fir Ultra Low Power Logic Using Emerging Tunneling Based Devices,” Pennsylvania State University, pp.4-6, 2011.
[15] Livio Lattanzio, Luca De Michielis, Arnab Biswas and Adrian M. Ionescu, et al., “Abrupt Switch based on Internally Combined Band-To-Band and Barrier Tunneling Mechanisms,” IEEE ESSDERC, pp353-356, 2010.
[16] Pierpaolo Palestri, “Semiclassical and Quantum Mechanical Modeling of Tunnel FET Devices,” DIEGM University of Udine, SINANO Summer School, pp.4-14, 2012.
[17] Sentaurus User Guide, Version H-2013.03.
[18] Alan Paussa, Gianluca Fiori, Pierpaolo Palestri, Matteo Geromel, David Esseni, Giuseppe Iannaccone, and Luca Selmi, “Simulation of the Performance of Graphene FETs With a Semiclassical Model, Including Band-to-Band Tunneling,” IEEE Trans. Electron Devices, Vol.61, No.5, pp.1567-1574, 2014.
[19] James Towfik Teherani, “Band-to-band Tunneling in Silicon Diodes and Tunnel Transistors,” The University of Texas at Austin, pp.21-29, 2010.
[20] E. O. Kane, “Zener Tunneling in Semiconductors,” J. Appl. Phys., Vol.12, No.2, pp.181-188, 1959.
[21] Koichi Fukuda, Takahiro Mori, Wataru Mizubayashi, Yukinori Morita , et al., “On the nonlocal modeling of tunnel-FETs-Device and Compact models,” SISPAD, 2012.
[22] Kuo-Hsing Kao, Anne S. Verhulst, William G. Vandenberghe, Bart Sorée, Guido Groeseneken, and Kristin De Meyer, “Direct and Indirect Band-to-Band Tunneling in Germanium-Based TFETs,” IEEE Trans. Electron Devices, Vol.59, No.2, pp.292-301, 2012.
[23] Dominic Pearman, “Electrical Characterisation and Modelling of Schottky barrier metal source/drain MOSFETs,” University of Warwick, pp.20-31, 2007.
[24] L. Hutin,z C. Le Royer, C. Tabone, V. Delaye, F. Nemouchi, F. Aussenac, L. Clavelier, and M. Vinet, “Schottky Barrier Height Extraction in Ohmic Regime: Contacts on Fully Processed GeOI Substrates,” Journal of The Electrochemical Society, Vol.156, No.7, pp.H522-H527, 2007.
[25] S. M. Sze, C. R. Crowell, and D. Kahng, “Photoelectric Determination of the Image Force Dielectric Constant for Hot electrons in Schottky Barriers,” J. Appl. Phys., Vol.35, pp2534, 1964.
[26] Harald Ibach, Hans Lüth, “Solid-State Physics: An Introduction to Principles of Materials Science,” 3rd Edition, Springer Science & Business Media, pp.157-158, 2013.
[27] Livio Lattanzio, Arnab Biswas, Luca De Michielis, and Adrian M. Ionescu, “A tunneling field-effect transistor exploiting internally combined band-to-band and barrier tunneling mechanisms,” Appl. Phys. Lett., vol.98, no.12, pp.123504-1–123504-3, 2010.
[28] G. Dingemans, C. A. A. van Helvoirt, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-Assisted Atomic Layer Deposition of Low Temperature SiO2,” ECS Trans., Vol.35, No.4, pp.191-204, 2011.
[29] J. L. P. J. van der Steen, “Investigation of the band gap widening effect in thin silicon double gate MOSFETs,” The University of Twente, pp.6-7, 2006.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *