|
[1] B. J. Baliga, “Power semiconductors devices,” Boston: PWS, pp. 28-29, 1996. [2] M. Willander, M. Friesel, Q. Wahab, and B. Straumal, “Silicon carbide and diamond for high temperature devices applications,” Journal of materials science: materials in electronics, pp. 1-25, 2006. [3] B. Gelmont, K. Kim, and M. Shur, “Monte carlo simulation of electron transport in gallium nitride,” J. Appl. Phys., vol. 74, no. 3, pp. 1818-1821, 1993. [4] K. Cheng, H. Liang, M. V. Hove, K. Geens, B. D. Jaeger, P. Srivastava, X. Kang, P. Favia, H. Bender, S. Decoutere, and J. Dekoster, “AlGaN/GaN/AlGaN double heterostructures grown on 200 mm silicon (111) substrate with high electron mobility,” Appl. Phys. Express, vol. 5, no. 1, pp. 011002, Dec. 2012. [5] A. R. Boyd, S. Degroote, M. Leys, F. Schulte, O. Rockenfeller, M. Luenenbuerger, M. Germain, J. Kaeppeler, and M. Heuken, “Growth of GaN/AlGaN on 200 mm diameter silicon wafers by MOCVD,” Phys. Status Solidi (c), vol. 6, no. S2, pp. S1045–S1048, Jan. 2009. [6] D. Christy, T. Egawa, Y. Yano, H. Tokunaga, H. Shimamura, Y. Yamaoka, A. Ubukata, T. Tabuchi, and K. Matsumoto, “Uniform growth of AlGaN/GaN high electron mobility transistors on 200 mm silicon substrate,” Appl. Phys. Express, vol. 6, pp. 026501, Jan. 2013. [7] J. A. Alamo, and J. Joh, “GaN HEMT reliability,” Microelectronics Reliability, vol. 49, Issues 9-11, Nov. 2009. [8] J. Kuzmik, G. Pozzovivo, C. Ostermaier, G. Strasser, D. Pogany, E. Gornik, J. F. Carlin, M. Gonschorek, E. Feltin, and N. Grandjean, “Analysis of degradation mechanisms in lattice-matched InAlN/ GaN high-electron-mobility transistors,” J. Appl. Phys., vol. 106, no. 12, pp.124503, 2009. [9] J. Kuzmik, “InAlN/ (In) GaN high electron mobility transistors: some aspects of the quantum well heterostructure proposal,” Semicond. Sci. Technol. 17, 2002. [10] J. Kuzmik, “Power electronics on InAlN / (In) GaN: Prospect for a record performance,” IEEE Electron Device Lett., vol. 22, no. 11, pp. 510–512, Nov. 2001. [11] O. Jardela1, G. Callet, J. Dufraisse, M. Piazza, N. Sarazin, E. Chartier, M. Oualli, R. Aubry, T. Reveyrand, J. Jacquet, M. D. F. Poisson, E. Morvan, S. Piotrowicz, and S. L. Delage, “Electrical performances of AlInN/GaN HEMTs. A comparison with AlGaN/GaN HEMTs with similar technological process,” International Journal of Microwave and Wireless Technologies, Vol. 3, issue 3, pp 301-309, 2011. [12] Y. Cao, D. Deen, J. Simon, J. Bean, N. Su, J. Zhang, P. Fay, H. Xing, and D. Jena, “Ultrathin MBE-Grown AlN/GaN HEMTs with record high current densities,” Semiconductor Device Research Symposium, 2007 International, vol., no., pp.1,2, 12-14, Dec. 2007. [13] J. Xue, Y. Hao, J. Zhang, and J. Ni, “Effect of high temperature AlN interlayer on the performance of AlGaN/GaN properties,” IEEE International Conference of Electron Devices and Solid-State Circuits, vol., no., pp.416, 418, 25-27, Dec. 2009. [14] J. Xie, X. Ni, M. Wu, J. H. Leach, and Ü. Özgür, “High electron mobility in nearly lattice-matched AlInN/AlN/GaN heterostructure field effect transistor,” Appl. Phys. Lett., vol. 91, no. 13, pp.132116, 2007. [15] P. Gamarra, C. Lacam, M. Magis, M. Tordjman, and M. F. Poisson, “The effect of ammonia flow in the AlN spacer on the electrical properties of InAlN/AlN/GaN HEMT structures,” Phys. Status Solidi A, 209: 21–24, 2012. [16] Y. Li, J. Zhang, W. Wan, Y. Zhang, Y. Nie, J. Zhang, and Y. Hao, “Alloy disorder scattering limited mobility of two-dimensional electron gas in the quaternary AlInGaN/GaN heterojunctions,” Physica E: Low-dimensional Systems and Nanostructures, Volume 67, March 2015. [17] M. Gonschorek, J. F. Carlin, E. Feltin, and M. A. Py, “High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures,” Applied Physics Letters, vol.89, no.6, pp.062106,062106-3, Aug 2006. [18] I. B. Rowena, S. L. Selvaraj, and T. Egawa, “Buffer thickness contribution to suppress vertical leakage current with high breakdown field (2.3 MV/cm) for GaN on Si,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1534–1536, Nov. 2011. [19] S. L. Selvaraj, A. Watanabe, A. Wakejima, and T. Egawa, “1.4-kV Breakdown voltage for AlGaN/GaNhigh-electron-mobility transistors on silicon substate,” IEEE Electron DeviceLett., vol. 33, pp.1375 -1377, 2012. [20] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimension electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, 1999. [21] N. Q. Zhang, S. Keller, G. Parish, S. Heikman, S. P. DenBaars, and U. K. Mishra, “High breakdown GaN HEMT with overlapping gate structure,” IEEE Electron Device Letter, vol. 21, no. 9, pp. 421-423, Sep. 2000. [22] H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, and U. K. Mishra, “High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates,” IEEE Electron Device Letter, vol. 25, no. 4, pp. 161-163, Apr. 2004. [23] Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. DenBaars, and U. K. Mishra, “High breakdown voltage achieved on AlGaN-GaN HEMTs with integrated slant field plates,” IEEE Electron Device Letter, vol. 27, no. 9, pp. 713-715, Sep. 2006. [24] J. Würfl, O. Hilt, E. B. Treidel, R. Zhytnytska, K. Klein, P. Kotara, F. Brunner, A. Knauer, O. Krüger, M. Weyers, and G. Tränkle, “Technological approaches towards high voltage, fast switching GaN power transistors,” ECS Transactions, vol. 52, pp. 979-989, 2013. [25] Y. C. Cho, M. Pophristic, H. Cha, B. Peres, M. G. Spencer, and L. F. Eastman, “The effect of an Fe-doped GaN buffer on OFF-state reakdown characteristics in AlGaN/GaN HEMTs on Si substrate,” IEEE Electron Device Letter, vol. 53, no. 12, pp. 2926-2928, Dec. 2006. [26] I. B. Rowena, S. L. Selvaraj, and T. Egawa, “Buffer thickness contribution to suppress vertical leakage current with high breakdown field (2.3 MV/cm) for GaN on Si,” IEEE Electron Device Letter, vol. 32, no. 11, pp. 1534-1536, Nov. 2011. [27] P. Srivastava, J. Das, D. Visalli, M. V. Hove, P. E. Malinowski, D. Marcon, S. Lenci, K. Geens, K. Cheng, M. Leys, S. Decoutere, R. P. Mertens, and G. Borghs, “Record breakdown voltage (2200 V) of GaN DHFETs on Si with 2-μm buffer thickness by local substrate removal,” IEEE Electron Device Lett., vol. 32, no. 1, pp. 30-32, Jan. 2011. [28] Y. W. Lian, Y. S. Lin, H. C. Lu, Y. C. Huang, and S. H. Hsu, “AlGaN/GaN HEMTs on silicon with hybrid schottky-ohmic drain for high breakdown voltage and low leakage current,” IEEE Electron Device Letter, vol. 33, no. 7, pp. 973-975, Jul. 2012. [29] J. Kuzmik, G. Pozzovivo, J. F. Carlin, M. Gonschorek, E. Feltin, N. Grandjean, G. Strasser, D. Pogany, and E. Gornik, “Off-state breakdown in InAlN/AlN/GaN high electron mobility transistors,” Phys. Stat. Sol. (C), vol. 6, no. S2, pp. S925–S928, Jun. 2009. [30] Q. Zhou, H. Chen, C. Zhou, Z. H. Feng, S. J. Cai, and K. J. Chen, “Schottky source/drain InAlN/AlN/GaN MISHEMT with enhanced breakdown voltage,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 38–40, Jan. 2012. [31] M. Wang and K. J. Chen, “OFF-state breakdown characterization in AlGaN/GaN HEMT using drain injection technique,” IEEE Trans. Electron Devices, vol. 57, no. 7, pp. 1492–1496, Jul. 2010. [32] Y. Liu, S. P. Singh, Y. J. Ngoo, L. M. Kyaw, M. K. Bera, Q. Q. Lo, and E. F. Chor, “Low thermal budget Hf/Al/Ta ohmic contacts for InAlN/GaN-on-Si HEMTs with enhanced breakdown voltage,” Journal of Vacuum Science & Technology B, 32, 032201, 2014. [33] Y. Dora, A. Chakraborty, S. Heikman, L. Mccarthy, S. Keller, S. P. Denbaars, and U. K. Mishra, “Effect of ohmic contacts on buffer leakage of GaN transistors,” IEEE Electron Device Lett., vol. 27, no. 7, pp. 529–531, Jul. 2006. [34] B. Lu, E. L. Piner, and T. Palacios, “Schottky-drain technology for AlGaN/GaN high-electron mobility transistors,” IEEE Electron Device Lett., vol. 31, no. 4, pp. 302–304, Apr. 2010. [35] Q. Zhou, H. Chen, C. Zhou, Z. H. Feng, S. J. Cai, and K. J. Chen, “Schottky source/drain InAlN/AlN/GaN MISHEMT with enhanced breakdown voltage,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 38–40, Jan. 2012. [36] B. Boudart, Y. Guhel, J. C. Pesant, P. Dhamelincourt, and M. A. Poisson, “Raman characterization of Mg+ ion-implanted GaN,” J. Phys., Condens. Matter, vol. 16, no. 2, pp. s49-s55, Jan. 2004. [37] T. Oishi, N. Miura, M. Suita, T. Nanjo, and Y. Abe, “Highly resistive GaN layers formed by ion implantation of Zn along the c-axis,” J. Appl. Phys., vol. 94, no. 3, pp. 1662-1666, Aug. 2003. [38] J. Y. Shiu, J. C. Huang, V. Desmaris, C. T. Chang, C. Y. Lu, K. Kumakura, T. Makimoto, H. Zirath, N. Rorsman, and E. Y. Chang, “Oxygen ion implantation isolation planar process for AlGaN/GaN HEMTs,” IEEE Electron Device Letter, vol. 28, no. 6, pp. 476-478, Jun. 2007. [39] S. R. Bahl, M. H. Leary, and J. A. Alamo, “Mesa-sidewall gate leakage in InAlAs/InGaAs heterostructure field effect transistors,” IEEE Trans. Electron Devices, vol. 39, no. 9, pp. 2037-2043, Sep. 1992. [40] Y. Lin, Y. M. Chen, T. J. Cheng, and Q. Ker, “Schottky barrier height and nitrogen-vacany-related defects in Ti alloyed ohmic contacts to n-GaN,” J. Appl. Phys., vol. 95, 2004. [41] D. Buttari, A. Chini, G. Meneghesso, E. Zanoni, B. Moran, S. Heikman, N. Q. Zhang, L. Shen, R. Coffie, S. P. DenBaars, and U. K. Mishra, “Systematic characterization of Cl2 reactive ion etching for improved ohmics in AlGaN/GaN HEMTs,” IEEE Electron Device Letters, vol. 23, no. 2, pp. 623-623, Feb. 2002. [42] L. Wang, D. H. Kim, and I. Adesida, “Direct contact mechanism of ohmic metallization to AlGaN/GaN heterostructures via ohmic area recess etching,” Appl. Phys. Lett. 95, 172107, 2009. [43] H. Tokuda, T. Kojima, and M. Kuzuhara, “Role of Al and Ti for ohmic contact formation in AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 101, no. 26, pp.262104, 2012. [44] N. Chaturvedi, U. Zeimer, J. Würfl, and G. Tränkle, “Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors,” Semicond. Science Technology, vol. 21, no. 2, pp. 175-179, 2006. [45] Q. Z. Liu and S.S. Lau, “A review of the metal-GaN contact technology,” Solid-State Electron., vol. 42, pp.677 -691, 1998. [46] B. Jacobs, M. Kramer, E. J. Geluk, and F. Karouta, “Optimisation of the Ti/Al/Ni/Au ohmic contact on AlGaN/GaN FET structures,” J. Crystal Growth, vol. 241, no. 1/2, pp.15 -18, 2002. [47] Z. Dong, J. Wang, R. Gong, S. Liu, C. P. Wen, M. Yu, F. Xu, Y. Hao, B. Shen, and Y. Wang, “Multiple Ti/Al stacks induced thermal stability enhancement in Ti/Al/Ni/Au Ohmic contact on AlGaN/GaN heterostructure,” Solid-State and Integrated Circuit Technology (ICSICT), vol., no., pp.1359, 1361, 1-4, Nov. 2010. [48] G. Koley, V. Tilak, L. F. Eastman, and M. G. Spencer, “Slow transients observed in AlGaN/GaN HFETs: effects of SiNx passivation and UV illumination,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 886-893, Apr. 2003. [49] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman, “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs,” IEEE Electron Device Letter, vol. 21, no. 6, pp. 268-270, Jun. 2000. [50] Q. Zhou, W. Chen, S. Liu, B. Zhang, Z. Feng, S. Cai, and K. J. Chen, “Schottky-contact technology in InAlN / GaN HEMTs for breakdown voltage improvement,” IEEE Trans. Electron Devices, vol.60, no.3, pp.1075, 1081, March 2013. [51] E. B. Treidel, O. Hilt, R. Zhytnytska, A. Wentzel, C. Meliani, J. Würfl, and G. Tränkle, “Fast-switching GaN-based lateral power Schottky barrier diodes with low onset voltage and strong reverse blocking,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 357359, Mar. 2012. [52] C. Huang, C. Y. Sua, T. Okadab, L. J. Lic, K. Hoa, P. W. Lid, I. H. Chend, C. Choue, C. S. Laia, and S. Samukawa, “Ultra-low-edge-defect graphene nanoribbons patterned by neutral beam,” Carbon, Volume 61, Pages 229-235, September 2013. [53] H. Lu, R. Zhang, X. Xiu, Z. Xie, and Y. Zheng, “Low leakage Schottky rectifiers fabricated on homoepitaxial GaN,” Appl. Phys. Letter, vol. 91, no. 17, pp. 172113-172113-3, Dec. 2007. [54] K. J. Schoen, J. M. Woodall, J. A. Cooper, and M. R. Melloch, “Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers,” IEEE Trans. Electron Devices, vol. 45, no. 7, pp. 1595-1603, Jul. 1998. [55] Y. Yao, J. Zhong, Y. Zheng, F. Yang, Y. Ni, Z. He, Z. Shen, G. Zhou, S. Wang, J. Zhang, J. Li, D. Zhou, Z. Wu, B. Zhang, and Y. Liu, “Current transport mechanism of AlGaN/GaN Schottky barrier diode with fully recessed Schottky anode,” Jpn. J. Appl. Phys., vol. 54, no. 1, pp. 011001-1–011001-6, April 2015. |