帳號:guest(3.128.30.46)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王脩為
作者(外文):Wang, Siou Wei
論文名稱(中文):矽基氮化鎵功率元件之高電子遷移率 電晶體與蕭特基二極體設計與製作
論文名稱(外文):Design and Fabrication of GaN-based HEMTs and SBDs on Silicon Substrate for Power Electronics Applications
指導教授(中文):徐碩鴻
指導教授(外文):Hsu, Shuo Hung
口試委員(中文):謝光前
孫健仁
口試委員(外文):Hsieh, Kuang Chien
Sun, Chien Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:102063508
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:93
中文關鍵詞:矽基氮化銦鋁/氮化鎵高電子遷移率電晶體矽基氮化鋁鎵/氮化鎵蕭特基二極體高功率
外文關鍵詞:InAlN/GaNHEMTsAlGaN/GaNSBDshigh power applicationsGaN-on-Si substrate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:374
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,由於氮化鎵元件有低導通電阻、高電流密度、高切換速度、高臨界崩潰電場及良好的熱穩定性,使其在高功率、高頻率及高溫操作的應用受到極大的注目。且隨著磊晶技術的進步,氮化鎵不僅能用較低的成本成長於大面積的矽基板上,在未來還很有機會可以整合進CMOS的電路中。因此,矽基氮化鎵對我們高功率應用的研究來說再適合也不過。
在本篇論文中,我們在矽基氮化銦鋁/氮化鎵高電子遷移率電晶體中提出了混和式汲極和混和式源/汲極的架構。此兩種架構跟傳統的高電子遷移率電晶體相比皆能在相同的導通電阻之下達到更高的崩潰電壓,且同時其高頻特性不會受太大的影響。更值得注意的是採用混和式源/汲極的高電子遷移率電晶體在同樣導通電阻的情況下可達到最好的崩潰電壓。這是因為混和式蕭特基-歐姆接觸的架構可以改變電場的分布且降低最大峰值電場因而抑制源極載子的注入及減緩在靠近汲極端的閘極邊緣之下的衝擊電離效應。由量測結果可得知,跟傳統的高電子遷移率電晶體相比,使用混和式源/汲極的崩潰電壓可提升高達120% (從50V到110V)。
另一方面,我們也在矽基氮化鋁鎵/氮化鎵蕭特基二極體中提出了用感應耦合電漿蝕刻及中性原子蝕刻兩種不同的技術來做出掘入式蕭特基陽極的架構。不論使用哪種蝕刻方式,此掘入式陽極的蕭特基二極體與傳統的蕭特基二極體相比,在一樣的導通電阻下能夠擁有更高的崩潰電壓且同時能有效地降低導通電壓。最重要的是,由於中性原子蝕刻的技術可以實現近乎無傷害的蝕刻表面,因此使用中性原子蝕刻的掘入式陽極蕭特基二極體能比用感應耦合電漿蝕刻的蕭特基二極體有較好的表現。最後,使用中性原子蝕刻的蕭特基二極體與傳統的蕭特基二極體相比,可以有效地降低導通電壓從1.1 V到0.55 V且同時大大地提升崩潰電壓高達369% (從130 V到610 V)。
Recently, GaN-based power devices have received significant attention for high power, high frequency and high temperature applications due to their superior electrical characteristics including low on-resistance, high current density, high switch speed, high critical breakdown electric field, and good thermal stability. With the gradually advanced epitaxy technology, GaN not only can be grown on the large size Si substrate at low price but also may be integrated with CMOS in the future. Therefore, GaN-on-Si substrate is a very promising choice for high power applications.
In this thesis, we demonstrated the InAlN/GaN High Electron Mobility Transistors (HEMTs) on a Si substrate with hybrid drain and hybrid source/drain structures. Both structures can achieve higher VBK than conventional HEMTs at the same Ron and meanwhile will not degrade the high frequency characteristics. More importantly, the hybrid source/drain HEMTs have the increased breakdown voltage (VBK) at the same Ron because the hybrid Schottky-ohmic structures can manipulate the electric field distribution and reduce the peak electric field leading to suppression of source-carrier-injection and impact ionization underneath the drain-side gate edge. The VBK of hybrid source/drain HEMTs can be improved up to 120% (from 50 V to 110 V) compared with conventional HEMTs. On the other hand, we also demonstrated the AlGaN/GaN Schottky Barrier Diodes (SBDs) on a Si substrate with Schottky recessed anode by neutral beam etching (NBE) and inductive coupled plasma (ICP). The recessed anode SBDs can effectively reduce Von and simultaneously realize higher VBK than non- recessed anode SBDs at the same Ron no matter which etching method is used (NBE or ICP). Most importantly, due to nearly damage-free etching by NBE technology, the anode-recessed SBDs by NBE achieve a better performance than the SBDs etching by ICP. Finally, the NBE technology compared with conventional SBDs can reduce Von from 1.1 V to 0.55 V with an enhanced VBK up to 369% (from 130 V to 610 V).
摘要 i
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 2
Chapter 2 Basic Concepts of GaN Material 3
2.1 Pros and Cons of GaN-on-Si Substrate 3
2.1.1 Wide bandgap materials 3
2.1.2 Saturation electron velocity 5
2.1.3 Breakdown voltage versus on-resistance 6
2.1.4 Substrate issue 8
2.2 Heterojuction Structure 10
2.2.1 Comparison of different barrier layers 10
2.2.2.1 Comparison of lattice constant with different barrier layer 10
2.2.2.2 Comparison of 2DEG density with different barrier layers 11
2.2.2 AlN interlayer 14
2.2.3 Buffer and GaN channel layer 15
2.3 Summary 17
Chapter 3 Design and Fabrication of InAlN/GaN High Electron Mobility Transistors for Power Applications 18
3.1 InAlN/GaN HEMTs 18
3.2 Schottky Source/Drain Technology 20
3.3 Device Design and Layout 21
3.4 Process Flow 24
3.4.1 Mesa isolation 24
3.4.2 Ohmic contact 25
3.4.2.1 Ohmic recess 26
3.4.2.2 Metal deposition 27
3.4.2.3 Rapid thermal annealing (RTA) 28
3.4.2.4 Transfer length method (TLM) 29
3.4.3 Schottky contact 31
3.4.4 Passivation 33
3.4.5 Via window and top metal 35
3.5 Results and Discussion 37
3.5.1 I-V characteristic 37
3.5.2 High frequency characteristic 49
3.5.3 Off-state characteristic 53
3.6 Summary 61
Chapter 4 Design and Fabrication of AlGaN/GaN Schottky Barrier Diodes with Schottky Recessed Anode by Different Etching Methods 62
4.1 AlGaN/GaN SBDs 62
4.2 Neutral Beam Etching 63
4.3 Device Design and Layout 64
4.4 Process Flow 66
4.4.1 Mesa isolation 66
4.4.2 Ohmic contact 67
4.4.3 Schottky recess 68
4.4.4 Schottky contact 70
4.4.5 Passivation 70
4.4.6 Via window and top metal 71
4.5 Results and Discussion 72
4.5.1 I-V characteristic 72
4.5.2 Off-state characteristic 77
4.6 Summary 84
Chapter 5 Conclusion and Future Work 85
References 86

[1] B. J. Baliga, “Power semiconductors devices,” Boston: PWS, pp. 28-29, 1996.
[2] M. Willander, M. Friesel, Q. Wahab, and B. Straumal, “Silicon carbide and diamond for high temperature devices applications,” Journal of materials science: materials in electronics, pp. 1-25, 2006.
[3] B. Gelmont, K. Kim, and M. Shur, “Monte carlo simulation of electron transport in gallium nitride,” J. Appl. Phys., vol. 74, no. 3, pp. 1818-1821, 1993.
[4] K. Cheng, H. Liang, M. V. Hove, K. Geens, B. D. Jaeger, P. Srivastava, X. Kang, P. Favia, H. Bender, S. Decoutere, and J. Dekoster, “AlGaN/GaN/AlGaN double heterostructures grown on 200 mm silicon (111) substrate with high electron mobility,” Appl. Phys. Express, vol. 5, no. 1, pp. 011002, Dec. 2012.
[5] A. R. Boyd, S. Degroote, M. Leys, F. Schulte, O. Rockenfeller, M. Luenenbuerger, M. Germain, J. Kaeppeler, and M. Heuken, “Growth of GaN/AlGaN on 200 mm diameter silicon wafers by MOCVD,” Phys. Status Solidi (c), vol. 6, no. S2, pp. S1045–S1048, Jan. 2009.
[6] D. Christy, T. Egawa, Y. Yano, H. Tokunaga, H. Shimamura, Y. Yamaoka, A. Ubukata, T. Tabuchi, and K. Matsumoto, “Uniform growth of AlGaN/GaN high electron mobility transistors on 200 mm silicon substrate,” Appl. Phys. Express, vol. 6, pp. 026501, Jan. 2013.
[7] J. A. Alamo, and J. Joh, “GaN HEMT reliability,” Microelectronics Reliability, vol. 49, Issues 9-11, Nov. 2009.
[8] J. Kuzmik, G. Pozzovivo, C. Ostermaier, G. Strasser, D. Pogany, E. Gornik, J. F. Carlin, M. Gonschorek, E. Feltin, and N. Grandjean, “Analysis of degradation mechanisms in lattice-matched InAlN/ GaN high-electron-mobility transistors,” J. Appl. Phys., vol. 106, no. 12, pp.124503, 2009.
[9] J. Kuzmik, “InAlN/ (In) GaN high electron mobility transistors: some aspects of the quantum well heterostructure proposal,” Semicond. Sci. Technol. 17, 2002.
[10] J. Kuzmik, “Power electronics on InAlN / (In) GaN: Prospect for a record performance,” IEEE Electron Device Lett., vol. 22, no. 11, pp. 510–512, Nov. 2001.
[11] O. Jardela1, G. Callet, J. Dufraisse, M. Piazza, N. Sarazin, E. Chartier, M. Oualli, R. Aubry, T. Reveyrand, J. Jacquet, M. D. F. Poisson, E. Morvan, S. Piotrowicz, and S. L. Delage, “Electrical performances of AlInN/GaN HEMTs. A comparison with AlGaN/GaN HEMTs with similar technological process,” International Journal of Microwave and Wireless Technologies, Vol. 3, issue 3, pp 301-309, 2011.
[12] Y. Cao, D. Deen, J. Simon, J. Bean, N. Su, J. Zhang, P. Fay, H. Xing, and D. Jena, “Ultrathin MBE-Grown AlN/GaN HEMTs with record high current densities,” Semiconductor Device Research Symposium, 2007 International, vol., no., pp.1,2, 12-14, Dec. 2007.
[13] J. Xue, Y. Hao, J. Zhang, and J. Ni, “Effect of high temperature AlN interlayer on the performance of AlGaN/GaN properties,” IEEE International Conference of Electron Devices and Solid-State Circuits, vol., no., pp.416, 418, 25-27, Dec. 2009.
[14] J. Xie, X. Ni, M. Wu, J. H. Leach, and Ü. Özgür, “High electron mobility in nearly lattice-matched AlInN/AlN/GaN heterostructure field effect transistor,” Appl. Phys. Lett., vol. 91, no. 13, pp.132116, 2007.
[15] P. Gamarra, C. Lacam, M. Magis, M. Tordjman, and M. F. Poisson, “The effect of ammonia flow in the AlN spacer on the electrical properties of InAlN/AlN/GaN HEMT structures,” Phys. Status Solidi A, 209: 21–24, 2012.
[16] Y. Li, J. Zhang, W. Wan, Y. Zhang, Y. Nie, J. Zhang, and Y. Hao, “Alloy disorder scattering limited mobility of two-dimensional electron gas in the quaternary AlInGaN/GaN heterojunctions,” Physica E: Low-dimensional Systems and Nanostructures, Volume 67, March 2015.
[17] M. Gonschorek, J. F. Carlin, E. Feltin, and M. A. Py, “High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures,” Applied Physics Letters, vol.89, no.6, pp.062106,062106-3, Aug 2006.
[18] I. B. Rowena, S. L. Selvaraj, and T. Egawa, “Buffer thickness contribution to suppress vertical leakage current with high breakdown field (2.3 MV/cm) for GaN on Si,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1534–1536, Nov. 2011.
[19] S. L. Selvaraj, A. Watanabe, A. Wakejima, and T. Egawa, “1.4-kV Breakdown voltage for AlGaN/GaNhigh-electron-mobility transistors on silicon substate,” IEEE Electron DeviceLett., vol. 33, pp.1375 -1377, 2012.
[20] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimension electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, 1999.
[21] N. Q. Zhang, S. Keller, G. Parish, S. Heikman, S. P. DenBaars, and U. K. Mishra, “High breakdown GaN HEMT with overlapping gate structure,” IEEE Electron Device Letter, vol. 21, no. 9, pp. 421-423, Sep. 2000.
[22] H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, and U. K. Mishra, “High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates,” IEEE Electron Device Letter, vol. 25, no. 4, pp. 161-163, Apr. 2004.
[23] Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. DenBaars, and U. K. Mishra, “High breakdown voltage achieved on AlGaN-GaN HEMTs with integrated slant field plates,” IEEE Electron Device Letter, vol. 27, no. 9, pp. 713-715, Sep. 2006.
[24] J. Würfl, O. Hilt, E. B. Treidel, R. Zhytnytska, K. Klein, P. Kotara, F. Brunner, A. Knauer, O. Krüger, M. Weyers, and G. Tränkle, “Technological approaches towards high voltage, fast switching GaN power transistors,” ECS Transactions, vol. 52, pp. 979-989, 2013.
[25] Y. C. Cho, M. Pophristic, H. Cha, B. Peres, M. G. Spencer, and L. F. Eastman, “The effect of an Fe-doped GaN buffer on OFF-state reakdown characteristics in AlGaN/GaN HEMTs on Si substrate,” IEEE Electron Device Letter, vol. 53, no. 12, pp. 2926-2928, Dec. 2006.
[26] I. B. Rowena, S. L. Selvaraj, and T. Egawa, “Buffer thickness contribution to suppress vertical leakage current with high breakdown field (2.3 MV/cm) for GaN on Si,” IEEE Electron Device Letter, vol. 32, no. 11, pp. 1534-1536, Nov. 2011.
[27] P. Srivastava, J. Das, D. Visalli, M. V. Hove, P. E. Malinowski, D. Marcon, S. Lenci, K. Geens, K. Cheng, M. Leys, S. Decoutere, R. P. Mertens, and G. Borghs, “Record breakdown voltage (2200 V) of GaN DHFETs on Si with 2-μm buffer thickness by local substrate removal,” IEEE Electron Device Lett., vol. 32, no. 1, pp. 30-32, Jan. 2011.
[28] Y. W. Lian, Y. S. Lin, H. C. Lu, Y. C. Huang, and S. H. Hsu, “AlGaN/GaN HEMTs on silicon with hybrid schottky-ohmic drain for high breakdown voltage and low leakage current,” IEEE Electron Device
Letter, vol. 33, no. 7, pp. 973-975, Jul. 2012.
[29] J. Kuzmik, G. Pozzovivo, J. F. Carlin, M. Gonschorek, E. Feltin, N. Grandjean, G. Strasser, D. Pogany, and E. Gornik, “Off-state breakdown in InAlN/AlN/GaN high electron mobility transistors,” Phys. Stat. Sol. (C), vol. 6, no. S2, pp. S925–S928, Jun. 2009.
[30] Q. Zhou, H. Chen, C. Zhou, Z. H. Feng, S. J. Cai, and K. J. Chen, “Schottky source/drain InAlN/AlN/GaN MISHEMT with enhanced breakdown voltage,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 38–40, Jan. 2012.
[31] M. Wang and K. J. Chen, “OFF-state breakdown characterization in AlGaN/GaN HEMT using drain injection technique,” IEEE Trans. Electron Devices, vol. 57, no. 7, pp. 1492–1496, Jul. 2010.
[32] Y. Liu, S. P. Singh, Y. J. Ngoo, L. M. Kyaw, M. K. Bera, Q. Q. Lo, and E. F. Chor, “Low thermal budget Hf/Al/Ta ohmic contacts for InAlN/GaN-on-Si HEMTs with enhanced breakdown voltage,” Journal of Vacuum Science & Technology B, 32, 032201, 2014.
[33] Y. Dora, A. Chakraborty, S. Heikman, L. Mccarthy, S. Keller, S. P. Denbaars, and U. K. Mishra, “Effect of ohmic contacts on buffer leakage of GaN transistors,” IEEE Electron Device Lett., vol. 27, no. 7, pp. 529–531, Jul. 2006.
[34] B. Lu, E. L. Piner, and T. Palacios, “Schottky-drain technology for AlGaN/GaN high-electron mobility transistors,” IEEE Electron Device Lett., vol. 31, no. 4, pp. 302–304, Apr. 2010.
[35] Q. Zhou, H. Chen, C. Zhou, Z. H. Feng, S. J. Cai, and K. J. Chen, “Schottky source/drain InAlN/AlN/GaN MISHEMT with enhanced breakdown voltage,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 38–40, Jan. 2012.
[36] B. Boudart, Y. Guhel, J. C. Pesant, P. Dhamelincourt, and M. A. Poisson, “Raman characterization of Mg+ ion-implanted GaN,” J. Phys., Condens. Matter, vol. 16, no. 2, pp. s49-s55, Jan. 2004.
[37] T. Oishi, N. Miura, M. Suita, T. Nanjo, and Y. Abe, “Highly resistive GaN layers formed by ion implantation of Zn along the c-axis,” J. Appl. Phys., vol. 94, no. 3, pp. 1662-1666, Aug. 2003.
[38] J. Y. Shiu, J. C. Huang, V. Desmaris, C. T. Chang, C. Y. Lu, K. Kumakura, T. Makimoto, H. Zirath, N. Rorsman, and E. Y. Chang, “Oxygen ion implantation isolation planar process for AlGaN/GaN HEMTs,” IEEE Electron Device Letter, vol. 28, no. 6, pp. 476-478, Jun. 2007.
[39] S. R. Bahl, M. H. Leary, and J. A. Alamo, “Mesa-sidewall gate leakage in InAlAs/InGaAs heterostructure field effect transistors,” IEEE Trans. Electron Devices, vol. 39, no. 9, pp. 2037-2043, Sep. 1992.
[40] Y. Lin, Y. M. Chen, T. J. Cheng, and Q. Ker, “Schottky barrier height and nitrogen-vacany-related defects in Ti alloyed ohmic contacts to n-GaN,” J. Appl. Phys., vol. 95, 2004.
[41] D. Buttari, A. Chini, G. Meneghesso, E. Zanoni, B. Moran, S. Heikman, N. Q. Zhang, L. Shen, R. Coffie, S. P. DenBaars, and U. K. Mishra, “Systematic characterization of Cl2 reactive ion etching for improved ohmics in AlGaN/GaN HEMTs,” IEEE Electron Device Letters, vol. 23, no. 2, pp. 623-623, Feb. 2002.
[42] L. Wang, D. H. Kim, and I. Adesida, “Direct contact mechanism of ohmic metallization to AlGaN/GaN heterostructures via ohmic area recess etching,” Appl. Phys. Lett. 95, 172107, 2009.
[43] H. Tokuda, T. Kojima, and M. Kuzuhara, “Role of Al and Ti for ohmic contact formation in AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 101, no. 26, pp.262104, 2012.
[44] N. Chaturvedi, U. Zeimer, J. Würfl, and G. Tränkle, “Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors,” Semicond. Science Technology, vol. 21, no. 2, pp. 175-179, 2006.
[45] Q. Z. Liu and S.S. Lau, “A review of the metal-GaN contact technology,” Solid-State Electron., vol. 42, pp.677 -691, 1998.
[46] B. Jacobs, M. Kramer, E. J. Geluk, and F. Karouta, “Optimisation of the Ti/Al/Ni/Au ohmic contact on AlGaN/GaN FET structures,” J. Crystal Growth, vol. 241, no. 1/2, pp.15 -18, 2002.
[47] Z. Dong, J. Wang, R. Gong, S. Liu, C. P. Wen, M. Yu, F. Xu, Y. Hao, B. Shen, and Y. Wang, “Multiple Ti/Al stacks induced thermal stability enhancement in Ti/Al/Ni/Au Ohmic contact on AlGaN/GaN heterostructure,” Solid-State and Integrated Circuit Technology (ICSICT), vol., no., pp.1359, 1361, 1-4, Nov. 2010.
[48] G. Koley, V. Tilak, L. F. Eastman, and M. G. Spencer, “Slow transients observed in AlGaN/GaN HFETs: effects of SiNx passivation and UV illumination,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 886-893, Apr. 2003.
[49] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman, “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs,” IEEE Electron Device Letter, vol. 21, no. 6, pp. 268-270, Jun. 2000.
[50] Q. Zhou, W. Chen, S. Liu, B. Zhang, Z. Feng, S. Cai, and K. J. Chen, “Schottky-contact technology in InAlN / GaN HEMTs for breakdown voltage improvement,” IEEE Trans. Electron Devices, vol.60, no.3, pp.1075, 1081, March 2013.
[51] E. B. Treidel, O. Hilt, R. Zhytnytska, A. Wentzel, C. Meliani, J. Würfl, and G. Tränkle, “Fast-switching GaN-based lateral power Schottky barrier diodes with low onset voltage and strong reverse blocking,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 357359, Mar. 2012.
[52] C. Huang, C. Y. Sua, T. Okadab, L. J. Lic, K. Hoa, P. W. Lid, I. H. Chend, C. Choue, C. S. Laia, and S. Samukawa, “Ultra-low-edge-defect graphene nanoribbons patterned by neutral beam,” Carbon, Volume 61, Pages 229-235, September 2013.
[53] H. Lu, R. Zhang, X. Xiu, Z. Xie, and Y. Zheng, “Low leakage Schottky rectifiers fabricated on homoepitaxial GaN,” Appl. Phys. Letter, vol. 91, no. 17, pp. 172113-172113-3, Dec. 2007.
[54] K. J. Schoen, J. M. Woodall, J. A. Cooper, and M. R. Melloch, “Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers,” IEEE Trans. Electron Devices, vol. 45, no. 7, pp. 1595-1603, Jul. 1998.
[55] Y. Yao, J. Zhong, Y. Zheng, F. Yang, Y. Ni, Z. He, Z. Shen, G. Zhou, S. Wang, J. Zhang, J. Li, D. Zhou, Z. Wu, B. Zhang, and Y. Liu, “Current transport mechanism of AlGaN/GaN Schottky barrier diode with fully recessed Schottky anode,” Jpn. J. Appl. Phys., vol. 54, no. 1, pp. 011001-1–011001-6, April 2015.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *