帳號:guest(3.144.114.109)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李翊瑋
作者(外文):Lee, Yi Wei
論文名稱(中文):奈升等級微流體生物膜反應器
論文名稱(外文):Nanoliter microfluidic biofilm bioreactor
指導教授(中文):楊雅棠
指導教授(外文):Yang, Ya Tang
口試委員(中文):莊嘉揚
陳致真
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:102063501
出版年(民國):104
畢業學年度:104
語文別:中文
論文頁數:49
中文關鍵詞:微流體晶片生物反應器生物膜大腸桿菌
外文關鍵詞:microfluidicbioteactorbiofilmE.coli
相關次數:
  • 推薦推薦:0
  • 點閱點閱:242
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
細菌培養技術應用在微生物學已經成熟,可是在液體上的過量消耗以及機台的維護上所需費力,在體積大的生物反應器上現代已經越來越微小化在晶片上,我們使用了大腸桿菌定期稀釋以及將生物反應室最小化分成兩部分,來確實執行模擬出宏觀生物反應器,我們設計了微流體晶片生物反應器(microfluidic bioreactor),這組裝置可執行自動化,長時間培養在nanoliter等級上的生物培養,跟即時的顯微鏡測量計算,因為微流體晶片的高面積體積比,可以有效地將浮游生物及生物膜共同生長,我們期待是有機會來時驗出更多的生物實驗。
Bacterial culture is a basic technique in both fundamental and applied microbiology. The excessive reagent consumption and laborious maintenance of bulk bioreactors for microbial culture have prompted the development of miniaturized on-chip bioreactors. With the minimal choice of two compartments (N = 2) and discrete time, periodic dilution steps, we realize a microfluidic bioreactor that mimics macroscopic serial dilution transfer culture. This device supports automated, long-term microbial cultures with a nanoliter-scale working volume and real-time monitoring of microbial populations at single-cell resolution. Because of the high surface-to-volume ratio, the device also operates as an effective biofilm-flow reactor to support cogrowth of planktonic and biofilm populations. We expect that such devices will open opportunities in many fields of microbiology.
目錄
一、緒論 1
1-1 研究動機 1
1-2 恆化器(chemostat) 3
1-3 微型生物反應室(microbioreactor) 6
1-4 生物膜 (Biofilm) 7
1-5 微流體晶片介紹 8
1-5-1 光罩(Mask) 8
1-5-2 膜仁(Mold) 8
1-5-3 閥門(Valve) 9
1-5-4 蠕動汞浦(peristaltic pump) 10
二、微流體晶片 11
2-1 膜仁製作(Mold) 11
2-2微流體晶片主體製作(Fabrication) 12
2-3 Bioreactor晶片結構(Structure) 14
2-4 Bioreactor稀釋模式(Dilution) 15
2-5 數學理論模型(Math) 16
三、系統架設 17
3-1 Labview晶片控制系統(Control) 19
3-2 溫度控制系統(Temp) 23
3-3 雙螢光數位顯微鏡(Digital Microscope) 25
3-4 Matlab計算(Count) 26
四、大腸桿菌長時間培養 28
4-1 大腸桿菌樣本準備 28
4-2設定以及實驗數據 28
4-3 長時間培養結果 29
五、結論 32
附錄 33
A-1 Bioreactor數學理論分析 33
A-1-1 簡介 33
A-1-2 伴隨著牆壁效應的Bioreactor模型 34
A-1-3 伴隨著牆壁效應Bioreactor模型的解析解 35
A-2 Matlab數學模擬程式碼 39
A-3 Matlab螢光微生物亮度強度計算程式碼 42
A-4 Arduino控制PWM溫度控制程式碼 43
中英專有名詞對照表 45
參考文獻 47






圖目錄
1-1 恆化器示意圖 2
1-2 離散恆化器 4
1-3 16個隔室的封閉迴圈以及大腸桿菌成長曲線 5
1-4 生物膜演化示意圖 6
1-5 光罩圖 7
1-6 膜仁 8
1-7 閥門運作方式 8
1-8 蠕動汞浦 9

2-2 微流體晶片製作流程 12
2-2 晶片設計的局部放大圖 13
2-3 稀釋流程 14

3-1 整體架構 16
3-2 上下層系統架設完整圖 17
3-3 下層多功能檢測系統電路 17
3-4 Labview及時控制顯示面板 19
3-5 管線的配置 20
3-6 溫度控制系統 22
3-7 Arduino控制溫濕度顯示在lcd版 22
3-8 零件裝置圖 23
3-9 雙螢光數位顯微鏡 24
3-10 物竟聚焦在整體圓環上 24
3-11 螢光亮度計算流程圖 26

圖 4-1 微流體管道稀釋 27
圖 4-2 螢光亮度成長曲線 29
圖 4-3 螢光亮度成長曲線 29
圖 4-4 生物膜在微流體晶片內成長示意圖 30
圖 4-5 使用倒立顯微晶觀察到的生物膜成長 30
1 J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial BioÞlms: A Common Cause of
Persistent Infections,” Science 284, 1318, (1999).
2 J. Kim, H.-D. Park, and S. Chung, “Microfluidic Approaches to Bacterial Biofilm Formation,” Molecules 17, 9818, (2012).
3 A. Karmi, D. Karig, A. Kumar, and A. M. Ardekani, “Interplay of physical mechanisms and biofilm processes: review of microfluidic methods,” Lab Chip 15, 23, (2015).
4 J. Kim, M. Hegde, S. H. Kim, T. K. Wood, and A. Jayaraman, “A microfluidic device for highthroughput bacterial biofilm studies,” Lab Chip 12, 1157, (2012).
5 V. Janakiraman, D. Englert, A. Jayaraman, and H. Baskaran, “Modeling Growth and Quorum Sensing in Biofilms Grown in Microfluidic Chambers,” Ann. Biomed Eng. 37, 1206, (2009).
6 S. H. Hong, M. Hegde, J. Kim, X. Wang, A. Jayaraman, and T. K. Wood, “Synthetic quorum-sensing circuit to control consortial biofi lm formation and dispersal in a microfluidic device,” Nat. Commun. 3, 613, (2012).
7 K. P. Kim, Y. G. Kim, C. H. Choi, H. E. Kim, S. H. Lee, W. S. Chang, and C. S. Lee, “In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device,” Lab Chip 10, 3296, (2010).
8 M. R. Benoit, C. G. Conant, C. Ionescu-Zanetti, M. Schwartz, and A. Matin, “New Device for High-Throughput Viability Screening of Flow Biofilms,” Appl. Environ. Microbiol. 76, 4136, (2010).
9 P. Sun, Y. Liu, J. Sha, Z. Y. Zhang, Q. Tu, P. Chen, and J. Y. Wang, “High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments,” Biosens. Bioelectron. 26, 1993, (2011).
10 M. Unger et al., “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science 288, 113, (2000).
11 J. Melin and S. R. Quake, “Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation,” Annu. Rev. Biophys. Biomol. Struct. 36, 213, (2007).
12 A. M. Streets and Y. Huang, “Chip in a lab: Microfluidics for next generation life science research,” Biomicrofluidics 7, 11302, (2013).
13 E. de Cr_ecy et al., “Development of a novel continuous culture device for experimental evolution of bacterial populations,” Appl. Microbio’l. Biotechnol. 77, 489, (2007).
14 V. A. de Crecy-Lagard, J. M. Bellalou, R. Mutzel, and P. Marliae, “Long term adaptation of a microbial population to a permanent metabolic constraint: overcoming thymineless death by experimental evolution of Escherichia coli,” BMC Biotechnol. 1, 10, (2001).
15 Novick and Szilard, “Description of Chemostat,” Science 112, 715, (1950).
16 F. K. Balagadde, L. C. You, C. L. Hansen, F. H. Arnold, and S. R. Quake, “Long-term monitoring of bacteria undergoing programmed population control in a microchemostat,” Science 309, 137, (2005).
17 S. B. Hsu and Y. T. Yang, “Theory of a microfluidic serial dilution bioreactor,” J. Math. Biol.
18 Guo-Yue Gu, Yi-Wei Lee, Chih-Chung Chiang, and Ya-Tang Yang, “A nanoliter microfluidic serial dilution bioreactor,” Biomicrofluidics 9, 044126, (2015).
19 S. S. Pylyugin and P. Waltman, “The simple chemostat with wall growth,” S.I.A.M. J. Appl. Math. 59, 1552, (1999).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *