|
1 J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial BioÞlms: A Common Cause of Persistent Infections,” Science 284, 1318, (1999). 2 J. Kim, H.-D. Park, and S. Chung, “Microfluidic Approaches to Bacterial Biofilm Formation,” Molecules 17, 9818, (2012). 3 A. Karmi, D. Karig, A. Kumar, and A. M. Ardekani, “Interplay of physical mechanisms and biofilm processes: review of microfluidic methods,” Lab Chip 15, 23, (2015). 4 J. Kim, M. Hegde, S. H. Kim, T. K. Wood, and A. Jayaraman, “A microfluidic device for highthroughput bacterial biofilm studies,” Lab Chip 12, 1157, (2012). 5 V. Janakiraman, D. Englert, A. Jayaraman, and H. Baskaran, “Modeling Growth and Quorum Sensing in Biofilms Grown in Microfluidic Chambers,” Ann. Biomed Eng. 37, 1206, (2009). 6 S. H. Hong, M. Hegde, J. Kim, X. Wang, A. Jayaraman, and T. K. Wood, “Synthetic quorum-sensing circuit to control consortial biofi lm formation and dispersal in a microfluidic device,” Nat. Commun. 3, 613, (2012). 7 K. P. Kim, Y. G. Kim, C. H. Choi, H. E. Kim, S. H. Lee, W. S. Chang, and C. S. Lee, “In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device,” Lab Chip 10, 3296, (2010). 8 M. R. Benoit, C. G. Conant, C. Ionescu-Zanetti, M. Schwartz, and A. Matin, “New Device for High-Throughput Viability Screening of Flow Biofilms,” Appl. Environ. Microbiol. 76, 4136, (2010). 9 P. Sun, Y. Liu, J. Sha, Z. Y. Zhang, Q. Tu, P. Chen, and J. Y. Wang, “High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments,” Biosens. Bioelectron. 26, 1993, (2011). 10 M. Unger et al., “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science 288, 113, (2000). 11 J. Melin and S. R. Quake, “Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation,” Annu. Rev. Biophys. Biomol. Struct. 36, 213, (2007). 12 A. M. Streets and Y. Huang, “Chip in a lab: Microfluidics for next generation life science research,” Biomicrofluidics 7, 11302, (2013). 13 E. de Cr_ecy et al., “Development of a novel continuous culture device for experimental evolution of bacterial populations,” Appl. Microbio’l. Biotechnol. 77, 489, (2007). 14 V. A. de Crecy-Lagard, J. M. Bellalou, R. Mutzel, and P. Marliae, “Long term adaptation of a microbial population to a permanent metabolic constraint: overcoming thymineless death by experimental evolution of Escherichia coli,” BMC Biotechnol. 1, 10, (2001). 15 Novick and Szilard, “Description of Chemostat,” Science 112, 715, (1950). 16 F. K. Balagadde, L. C. You, C. L. Hansen, F. H. Arnold, and S. R. Quake, “Long-term monitoring of bacteria undergoing programmed population control in a microchemostat,” Science 309, 137, (2005). 17 S. B. Hsu and Y. T. Yang, “Theory of a microfluidic serial dilution bioreactor,” J. Math. Biol. 18 Guo-Yue Gu, Yi-Wei Lee, Chih-Chung Chiang, and Ya-Tang Yang, “A nanoliter microfluidic serial dilution bioreactor,” Biomicrofluidics 9, 044126, (2015). 19 S. S. Pylyugin and P. Waltman, “The simple chemostat with wall growth,” S.I.A.M. J. Appl. Math. 59, 1552, (1999).
|