|
[1] Amazon Data Pipeline. http://aws.amazon.com/datapipeline. [2] Amazon DynamoDB. http://aws.amazon.com/dynamodb. [3] Amazon EC2. http://aws.amazon.com/ec2. [4] Amazon EMR. http://aws.amazon.com/elasticmapreduce. [5] Amazon RDS. http://aws.amazon.com/rds. [6] Amazon S3. http://aws.amazon.com/s3. [7] Amazon Simple Work ow Service. http://aws.amazon.com/swf. [8] Amazon Web Services. http://aws.amazon.com. [9] Apache Hadoop. http://hadoop.apache.org. [10] Apache Spark. http://spark.apache.org. [11] Azure HDInsight. http://azure.microsoft.com/services/hdinsight. [12] Google Cloud Dataproc. http://cloud.google.com/dataproc. [13] Google Cloud Platform. http://cloud.google.com. [14] IBM BigInsights for Apache Hadoop. http://console.ng.bluemix.net/catalog/services/biginsights- for-apache-hadoop. [15] IBM Bluemix. http://console.ng.bluemix.net. [16] Microsoft Azure. http://azure.microsoft.com. [17] Rackspace Cloud Big Data. http://www.rackspace.com/cloud/big-data. [18] Rackspace. http://www.rackspace.com. [19] P. Brucker, S. Heitmann, and J. Hurink. Flow-shop problems with intermediate buers. Technical report. [20] H. G. Campbell, R. A. Dudek, and M. L. Smith. A heuristic algorithm for the n job, m machine sequencing problem. Management Science, 16(10):B{630 { B{637, 1970. [21] M. R. Garey, D. Johnson, and R. Sethi. The complexity of owshop and jobshop scheduling. Mathematics of Operations Research, 1(2):117 { 129, 1976. [22] S. Hammoud, M. Li, Y. Liu, N. Alham, and Z. Liu. Mrsim: A discrete event based mapreduce simulator. In Fuzzy Systems and Knowledge Discov- ery (FSKD), 2010 Seventh International Conference on, volume 6, pages 2993{ 2997, Aug 2010. [23] S. M. Johnson. Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1:61{68, 1954. [24] B.-B. Li and L. Wang. A hybrid quantum-inspired genetic algorithm for mul- tiobjective ow shop scheduling. Systems, Man, and Cybernetics, Part B: Cy- bernetics, IEEE Transactions on, 37(3):576{591, June 2007. [25] M. Nawaz, E. E. Enscore, and I. Ham. A heuristic algorithm for the m-machine, n-job ow-shop sequencing problem. Omega, 11(1):91 { 95, 1983. [26] C. H. Papadimitriou and P. C. Kanellakis. Flowshop scheduling with limited temporary storage. J. ACM, 27(3):533{549, July 1980. [27] S. R. Ramakrishnan, G. Swart, and A. Urmanov. Balancing reducer skew in mapreduce workloads using progressive sampling. In Proceedings of the Third ACM Symposium on Cloud Computing, SoCC '12, pages 16:1{16:14, New York, NY, USA, 2012. ACM. [28] C. Smutnicki. A two-machine permutation ow shop scheduling problem with buers. Operations-Research-Spektrum, 20(4):229{235, 1998. [29] A. A. C. Sujit K. Dutta. Sequencing two-machine ow-shops with nite inter- mediate storage. Management Science, 21(9):989{996, 1975. [30] A. Verma, L. Cherkasova, and R. H. Campbell. Aria: Automatic resource inference and allocation for mapreduce environments. In Proceedings of the 8th ACM International Conference on Autonomic Computing, ICAC '11, pages 235{244, New York, NY, USA, 2011. ACM.
|