帳號:guest(18.119.167.33)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高忠毅
作者(外文):Kao, Chung Yi
論文名稱(中文):考慮共同路徑悲觀移除的漸進式時序分析
論文名稱(外文):Incremental Timing Analysis with Common Path Pessimism Removal
指導教授(中文):王廷基
指導教授(外文):Wang, Ting Chi
口試委員(中文):王俊堯
麥偉基
口試委員(外文):Wang, Chun Yao
Mak, Wai Kei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:102062635
出版年(民國):104
畢業學年度:104
語文別:英文
論文頁數:37
中文關鍵詞:共同路徑悲觀移除漸進式時序分析靜態時序分析
外文關鍵詞:Common path pessimism removalIncremental timing analysisStatic timing analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:301
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
靜態時序一般用來驗證一個電路的時序,為了有效的考慮晶片上的變異,時序分析通常會使用「最快/最慢」分離的機制。然而,這樣的分離機制帶來了過度悲觀的情況,而導致時間測試得到錯誤的結果。「共同路徑悲觀移除̀」利用分析所有潛在問題的路徑,來移除這樣的悲觀,並且更正這些路徑上面的時序。另外,在最佳化的流程中,一個電路會經歷很多的指令修改,因此時序資訊可能被嚴重的影響。為了保持時序的一致性,快速且準確的時序更新技術成為一個重要的議題。

這篇論文提出了一個修改過的時序模型圖,可以讓現有的共同路徑悲觀移除演算法,免除一個因為上升/下降分離而產生的額外所需時間。此外,我們也提出了一個漸進式時序分析架構,可以很有效的處理大量的電路修改指令。我們努力改善精準度,並且希望節省時間和記憶體使用量。實驗數據顯示我們的時序分析工具在以下三個方面皆勝過TAU 2015比賽的前兩名 (1) 1.58倍加速相對於iTimerC以及2.21倍加速相對於UI-Timer 2.0 (2) 精準度上的改善 以及 (3) 更少的記憶體使用量。
Static timing analysis is generally employed to verify the timing of a circuit. To effectively consider on-chip variations, early-late split mechanism is performed commonly. However, this split mechanism introduces unnecessary pessimism, which can mislead timing tests. Common path pessimism removal (CPPR) attempts to eliminate such pessimism by tracing those potentially problematic paths and correcting the timing information for those paths. During an optimization flow, a circuit could be modified by lots of operations and consequently the timing information has potential to be significantly affected. To keep timing information consistent for ensuring the timing closure, quickly and accurately updating timing information becomes a crucial issue.

In this thesis, we propose a modified timing graph to avoid the existing CPPR algorithm proposed in [3] from suffering the extra penalties caused by rise/fall transitions spilt. Furthermore, we propose an incremental timing framework which is friendly on handling a large number of circuit modification operations. We make effort to promote the accuracy with saving runtime and memory usage. Experimental results show that our timer can outperform the winners of TAU 2015 contest by (1)1.58X speedup over iTimerC 2.0 and 2.21X speedup over UI-Timer 2.0, (2) accuracy improvement and (3) much less memory usage.
1 Introduction 1
1.1 Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Static Timing Analysis 4
2.1 De nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Timing propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Common Path Pessimism Removal 9
3.1 Common path pessimism . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Pessimism removal in STA . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Problem Formulation 14
4.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Timing Analysis Framework 17
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.1 Timing calculation . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.2 Path retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 CPPR lookup table construction . . . . . . . . . . . . . . . . . . . . . 20
5.2.1 Main methodology . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2 Modi cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.3 Credit calculation . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 DFS-based test point post-CPPR rat calculation . . . . . . . . . . . . 23
5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 DFS-based path retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.1 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Incremental timing analysis . . . . . . . . . . . . . . . . . . . . . . . 28
6 Experimental Results 29
7 Conclusion 36
References 37
[1] Y. Kukimoto, M. Berkelaar and K. Sakallah, "Static Timing Analysis." Logic Synthesis and
Veri cation, pp. 373-401, 2002.
[2] N. Gupta, "Removing Pessimism and Optimism in Timing Analysis," EE Times, 2012.
[3] J. Bhasker and R. Chadha, "Static Timing Analysis for Nanometer Designs: A Practical
Approach," Springer, 2009.
[4] TAU 2014 Contest: Common Path Pessimism Removal (CPPR),
https://sites.google.com/site/taucontest2014.
[5] J. Hu, D. Sinha and I. Keller, "TAU 2014 Contest on Removing Common Path Pessimism
during Timing Analysis," in Proc. International Symposium on Physical Design, pp. 153-160,
2014.
[6] J. Zejda and P. Frain, "General Framework for Removal of Clock Network Pessimism," in
Proc. International Symposium on Physical Design, pp. 632-639, 2002.
[7] C. H. Tsai and W. K. Mak, "A Fast Parallel Approach for Common Path Pessimism Re-
moval," in Proc. Asia and South Paci c Design Automation Conference, pp. 372-377, 2015.
[8] Y. M. Yang, Y. W. Chang, I. H. R. Jiang, "iTimerC: Common Path Pessimism Removal
Using E ective Reduction Methods," in Proc. Interational Conference on Computer-Aided
Design, pp. 600-605, 2014
[9] T. W. Huang, P. C. Wu and M. D. F. Wong, "UI-timer: An Ultra-fast Clock Network
Pessimism Removal Algorithm," in Proc. Interational Conference on Computer-Aided Design,
pp. 758-765, 2014
[10] TAU 2015 Contest: Incremental Timing and Incremental CPPR,
https://sites.google.com/site/taucontest2015.
[11] M. A. Bender and M. F. Colton, "The LCA Problem Revisited," in Proc. 4th Latin American
Symposium on Theoretical Informatics, pp. 88-94, 2000.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *