帳號:guest(18.220.188.4)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):韓儩源
作者(外文):Han, Szu-Yuan
論文名稱(中文):在次16奈米半導體製程下以延遲為取向之佈局層配置
論文名稱(外文):Delay-driven Layer Assignment for Sub-16nm Technology Nodes
指導教授(中文):王廷基
指導教授(外文):Wang, Ting-Chi
口試委員(中文):麥偉基
劉文皓
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:102062629
出版年(民國):105
畢業學年度:104
論文頁數:34
中文關鍵詞:次16奈米佈局層配置
外文關鍵詞:sub-16nmlayer assignment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:507
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
隨著科技的演進,連線延遲仍然主導著電路性能。當製程進入了32奈米的節點後,不同分層的佈局層有不同預設寬度的導線,這使得繞線延遲受到繞線的佈局層分配影響甚深。此外,當進入了次16奈米節點後,因為延遲受到導線的耦合影響越來越大以及不能任意得調整導線寬度來降低導線電容,這使得時序優化的問題很難以解決。這篇論文試著解決一個在全域繞線階段時考慮耦合效應以及通孔延遲的延遲取向之佈局層配置問題。而這邊提出利用概率性方法而建的找查表來估計耦合電容模型。未了考慮可繞性,使用了協商為基礎的架構來取得延遲和擁擠以及通孔數量之平衡。最後,提出的演算法可以透過使用平行導線以及非預設規則的導線來降低延遲。而實驗數據顯示了我們的佈局層配置演算法有很好的效益。
As technology advances, the interconnect delay gradually dominates the circuit performance but the emerging issues makes timing optimization become more complicated. Since 32nm nodes, different tiers of layers have different default wire widths such that the layer assignment of routing wires greatly impacts interconnect delay. Moreover, below 16nm nodes, because the wire coupling impacts delay more significantly and wire width cannot be arbitrarily sized to reduce wire capacitance, the timing optimization problem is harder to resolve. This thesis addresses a delay-driven layer assignment problem with consideration of via delay and coupling effect in the global routing stage. A look-up table method is proposed to estimate the coupling capacitance modeled by a probabilistic approach. In order to consider routability, a negotiation-based framework is presented to strike a good balance between delay, congestion, and via count. Finally, the proposed algorithm is able to use parallel wires and non-default-rule (NDR) wires to pursue better delay reduction instead of using wire sizing. The effectiveness of our layer assignment algorithm is well supported by extensive experimental results.
1 Introduction 1
2 Problem Formulation 4
2.1 Parallel Wires and NDR Wires 5
2.2 Wire Congestion Constraints 6
2.3 Delay Model 6
3 Parasitic Extraction 8
4 Delay-driven Layer Assignment 10
4.1 Algorithm flow 11
4.2 Single net layer assignments 14
4.2.1 Overview of DPLA 15
4.2.1 Find a minimum cost assignment 17
4.3 Delay Calculation 20
4.4 Node weighting 20
4.5 Threshold of using parallel wires and NDR wires 21
5 Experimental Results 26
5.1 Delay Impact from Coupling Capacitance 26
5.2 Threshold Setting of Parallel Wires and NDR Wires 27
5.3 Effectiveness of the Node Weighting 28
5.4 Effectiveness of Using Parallel and NDR Wires 29
6 Conclusions 31
[1] M.-K. Hsu, N. Katta, H. Y.-H. Lin, K. T.-H. Lin, K. H. Tam, and K. C.- H. Wang, “Design and manufacturing process co-optimization in nanotechnology,” in International Conference on Computer-Aided Design, pp. 574–581, 2014.

[2] C. C. N. Chu and D. F. Wong, “Greedy wire-sizing is linear time,” in International Symposium on Physical Design, pp. 39-44, 1998.

[3] C. C. N. Chu and M. D. F. Wong, “An efficient and optimal algorithm for simultaneous buffer and wire sizing” in IEEE Transactions Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 9, pp. 1297-1304, 1999.

[4] J. Lilli, C.-K. Cheng and T.-T. Y. Lin,“Optimal and efficient buffer insertion and wire sizing,” in Custom Integrated Circuits Conference, pp. 259-262, 1995.

[5] R. Ewetz, C.-K. Koh, W.-H. Liu, T.-C. Wang and K.-Y. Chao, “A study on the use of parallel wiring techniques for sub-20nm designs,” in Great Lakes Symposium on VLSI, pp.129-134, 2014.

[6] N. J. Naclerio, S. Masude, and K. Nakajima, “The via minimization problem is NP-complete,” in IEEE Transactions on Computers, vol. 38, no. 11, pp. 1604-1608, 1989.

[7] M. Cho and D. Z. Pan, “BoxRouter: a new global router based on box expansion and progressive ILP,” in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 26, no. 12, pp. 2130–2143, 2007

[8] T.-H. Lee and T.-C. Wang, “Congestion-constrained layer assignment for via minimization in global routing,” in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 9, pp. 1643–1656, 2008.



[9] W.-H. Liu and Y.-L. Li, “Negotiation-based layer assignment for via count and via overflow minimization,” in Asia and South Pacific Design Automation Conference, pp. 539–544, 2011.

[10] J. Ao, S. Dong, S. Chen, and S. Goto, “Delay-driven layer assignment in global routing under multi-tier interconnect structure,” in International Symposium on Physical Design, pp. 101–107, 2013.

[11] Z. Li, C. J. Alpert, S. Hu, T. Muhmud, S. T. Quay, and P. G. Villarrubia, “Fast interconnect synthesis with layer assignment,” in International Symposium on Physical Design, pp. 71–77, 2008.

[12] S. Hu, Z. Li, and C. J. Alpert, “A faster approximation scheme for timing driven minimum cost layer assignment,” in International Symposium on Physical Design, pp. 167–174, 2009.

[13] Bei Yu, D. Liu, S. Chowdhury, and D. Z. Pan, “TILA: Timing-driven incremental layer assignment,” in International Conference on Computer-Aided Design, pp. 110-117, 2015.

[14] DAC 2012 Routability-Driven Placement Contest http://archive.sigda.org/dac2012/contest/dac2012_contest.html

[15] W. C. Elmore, “The transient response of damped linear networks with particular regard to wideband amplifier,” in Journal of Applied Physics, vol. 19, no. 1, pp.55-63, 1948.

[16] K. Nabors and J. White. “FastCap: A multipole accelerated 3-D capacitance extraction program,” in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 10, no. 11, pp. 1447–1459, 1991.

[17] J. Phillips and J. White. “A precorrected-FFT method for electrostatic analysis of complicated 3-D structures,” in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 16, no. 10, pp 1059–1072, 1997.

[18] ITRS: Roadmap 2011.
http://www.itrs.net/links/2011itrs/home2011.html.

[19] M.-K. Hsu, Y.-F. Chen, C.-C. Huang, T.-C. Chen, and Y.-W. Chang, “Routability-driven placement for hierarchical mixed-size circuit designs,” in Design Automation Conference, pp. 1-6, 2013.


[20] W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao, “NCTU-GR 2.0: multithreaded collision-aware global routing with bounded-length maze routing,” in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 5, pp. 709–722, 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *