帳號:guest(3.145.157.44)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):侯宗佑
作者(外文):Hou, Zong You
論文名稱(中文):多層式網路應用服務之雲端多功能資源管理系統
論文名稱(外文):Multi-objective Resource Management System for Multi-tier Web Service Based on Public Cloud
指導教授(中文):黃能富
指導教授(外文):Huang, Nen Fu
口試委員(中文):陳俊良
石維寬
口試委員(外文):Chen, Jiann Liang
Shih, Wei Kuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:102062595
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:57
中文關鍵詞:基礎設施即服務網路應用服務自動擴展即時轉移公有雲
外文關鍵詞:IaaSWeb ServiceAuto ScalingLive MigrationPublic Cloud
相關次數:
  • 推薦推薦:0
  • 點閱點閱:125
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
透過Infrastructure as a service (IaaS),使用者可以依據自己系統的需求,在任何的時間點租賃不同規格或是數量的虛擬機器來動態的改變系統規模。基於這個優點,許多網路應用服務都已經將系統的佈建從實體伺服器轉移到了IaaS的公有雲環境上。在多層式網路應用服務系統中,通常同時存在可複製和不可複製的應用程式。對於可複製的應用來說,透過增加VM數量達到橫向的擴展相對的簡單。對於像是主資料庫這種因為架構限制而只能單一存在的應用,就只能執行縱向擴展。但是在公有雲的環境中,目前只能透過VM替換來達到縱向擴展的效果,而這又會造成明顯的服務中斷。因此,目前的雲端資源管理服務幾乎都不提供自動縱向擴展的功能,造成多層式網路應用服務很快就會遇到自動擴展的瓶頸
在此篇論文中,為了突破這個自動擴展的瓶頸,我們設計並實作了針對佈建於公有雲的網路應用的資源管理系統。我們實作了模糊控制模組用以處理資源管理的問題。系統也同時具備橫向及縱向擴展的功能,並且我們針對了資料庫實做了動態遷移的機制,用來減輕在對資料庫進行縱向擴展時造成的服務中斷。我們也透過真實的多層式網路應用系統KITs Cloud,來進行實驗分析。實驗結果證明了在公有雲中,多層式系統在缺乏縱向擴展的情況下很快就會達到自動擴展的限制。同時實驗也證明了,相較於目前的自動擴展服務,我們的系統大幅提升了網路應用系統的擴展性。
Infrastructure as a service (IaaS), which provides consumers to rent VMs with different volume and number, allows users to adjust the scale of their application dynamically based on their requirement. Many web service providers have outsourced their application deployment to the IaaS-provided public cloud environment. In a multi-tier web service system, usually there exists both replicable and non-replicable applications. It is relatively simple to perform automatic horizontal scale out for replicable applications. As for non-replicable applications due to the architecture restriction like master database, vertical scaling is required. Nevertheless, replacement is currently the only way to perform vertical scaling in public cloud. This will cause apparent service interruption to the client. Hence, current cloud resource management services do not provide the automation of scale up process. Based on this issue, the web service systems will soon reach their scalability limitation even they adopt the resource management service.
In this thesis, to overcome the scalability limitation, we design and implement a multi-objective resource management system for web service deployed in public cloud. We implement a fuzzy logic controller to deal with the provisioning problem. Both horizontal and vertical scaling are developed in our system. We also implement live migration for database, in order to minimize the service down time when performing vertical scaling. Experiments are conducted with a real-world multi-tier web service, KITs Cloud. The result proves our proposed requirement of automatic vertical scaling for multi-tier web service. Comparing to existing auto-scaling service, our system largely improves the scalability as well.
Abstract I
中文摘要 II
Table of Contents III
List of Figures IV
List of Tables V
Chapter 1 Introduction 1
Chapter 2 Related Works 5
2.1 Resource Management Service 5
2.2 Provisioning System 7
2.3 Database live migration 8
Chapter 3 Design Overview 11
3.1 Fuzzy Logic Controller 11
3.2 Database Live Migration 14
Chapter 4 System Architecture and Implementation 17
4.1 KITs Cloud Architecture 18
4.2 KITs Cloud Web Service 19
4.3 HyperH Architecture 22
4.4 HyperH Rule Design 30
Chapter 5 Experiment and Evaluation 32
5.1 User Request Model 32
5.2 Experiment Setup 35
5.3 Experiment Result 37
Chapter 6 Conclusions and Future Works 47
References 49
[1] NIST, "The NIST Definition of Cloud Computing". [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.
[2] stack exchange, "stackflow website". [Online]. Available: http://stackoverflow.com/.
[3] "StackOverflow Update: 560M Pageviews A Month, 25 Servers, And It's All About Performance," High Scalability. [Online]. Available: http://highscalability.com/blog/2014/7/21/stackoverflow-update-560m-pageviews-a-month-25-servers-and-i.html.
[4] Amazon, "Amazon EC2 website". [Online]. Available: http://aws.amazon.com/tw/ec2/.
[5] Microsoft, "Microsoft Azure website". [Online]. Available: http://azure.microsoft.com/zh-tw/.
[6] RightScale Inc, "RightScale website". [Online]. Available: http://www.rightscale.com/?utm_expid=99127306-75.HRZOZscaQUmmbp3-FlBRkg.0.
[7] Scalr Inc, " Scalr website". [Online]. Available: http://www.scalr.com/.
[8] L. Rodero-Merino, L. Vaquero, V. Gil, F. Galán, J. Fontán, R. Montero and I. Llorente, "From infrastructure delivery to service management in clouds," Future Generation Computer Systems, vol. 26, no. 8, pp. 1226-1240, 2010.
[9] Apache, "Apache HTTP Server Project". [Online]. Available: http://httpd.apache.org/.
[10] HAProxy, "HAProxy website". [Online]. Available: http://www.haproxy.org/.
[11] Google, "Compute Engine". [Online]. Available: https://cloud.google.com/compute/.
[12] Google, "Stackdriver". [Online]. Available: http://www.stackdriver.com/.
[13] CHT Telecom, "Hicloud website". [Online]. Available: http://hicloud.hinet.net/.
[14] OpenNebula Org., "OpenNebula website". [Online]. Availabile: http://opennebula.org/.
[15] RightScale Inc, "Vertically Scale a Server". [Online]. Available: https://support.rightscale.com/12-Guides/Dashboard_Users_Guide/Manage/Dep
loyments/Servers/Actions/Vertically_Scale_a_Server/.
[16] B. Urgaonkar, P. Shenoy, A. Chandra and P. Goyal, "Dynamic Provisioning of Multi-tier Internet Applications," Second International Conference on Autonomic Computing (ICAC'05), pp. 217-228, Seattle, WA, USA, 2005.
[17] C. Xu, J. Rao and X. Bu, "URL: A unified reinforcement learning approach for autonomic cloud management," Journal of Parallel and Distributed Computing, vol. 72, no. 2, pp. 95-105, 2012.
[18] Martinez and E. Ipek, "Dynamic Multicore Resource Management: A Machine Learning Approach," IEEE Micro, vol. 29, no. 5, pp. 8-17, 2009.
[19] J. Cao, W. Zhang and W. Tan, "Dynamic Control of Data Streaming and Processing in a Virtualized Environment," IEEE Transactions on Automation Science and Engineering, vol. 9, no. 2, pp. 365-376, 2012.
[20] Jianbin Wei and Cheng-Zhong Xu, "eQoS: Provisioning of Client-Perceived End-to-End QoS Guarantees in Web Servers," IEEE Transactions on Computers, vol. 55, no. 12, pp. 1543-1556, 2006.
[21] J. Rao, Y. Wei, J. Gong and C. Xu, "DynaQoS: Model-free self-tuning fuzzy control of virtualized resources for QoS provisioning," 2011 IEEE 19th International Workshop on Quality of Service (IWQoS), pp. 1-9, San Jose, CA, USA, 2011.
[22] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield, "Live migration of virtual machines," Proceedings of the 2nd Usenix Symp. Networked Systems Design and Implementation, pp. 273 -286, Boston, MA, USA, 2005
[23] A. Elmore, S. Das, D. Agrawal and A. El Abbadi, "Zephyr: live migration in shared nothing databases for elastic cloud platforms," Proceedings of the 2011 international conference on Management of data - SIGMOD '11, pp. 301-312 ,Athens, Greece, 2011.
[24] Oracle Inc., "Database Live Migration with Oracle Multitenant and the Oracle Universal Connection Pool (UCP) on Oracle Real Application Clusters (RAC)". [Online]. Available: http://www.oracle.com/technetwork/database/multitenant/learn-more/pdblivemigration-2301324.pdf.
[25] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi, "Live Database Migration for Elasticity in a Multitenant Database for Cloud Platforms," Technical Report 2010-09, pp. 1-14, CS, UCSB, 2010.
[26] S. Das, D. Agrawal, and A. El Abbadi, "ElasTraS: An elastic transactional data store in the cloud," USENIX HotCloud, Article No.7, San Diego, CA, USA, 2009.
[27] "H2 Database Engine website". [Online]. Availabile http://www.h2database.com/html/main.html.
[28] MongoDB, Inc., "MongoDB". [Online]. Available: https://www.mongodb.org/.
[29] Google, "Autoscaler". [Online]. Available: https://cloud.google.com/compute/docs/autoscaler/.
[30] KITs Tech, "KITs Cloud website". [Online]. Available: http://elite.kits.tw/.
[31] Apache, "Apache Tomcat". [Online]. Available: http://tomcat.apache.org/.
[32] Oracle, Inc. "MySQL website". [Online]. Available: http://www.mysql.com/.
[33] Digium, "Asterisk". [Online]. Available: http://www.asterisk.org/.
[34] MongoDB, Inc., "FAQ: Replication and Replica Sets". [Online]. Available: http://docs.mongodb.org/manual/faq/replica-sets/.
[35] SendGrid Inc., "SendGrid webiste". [Online]. Available: https://sendgrid.com/.
[36] nexmo Inc, "nexmo website". [Online]. Available: https://www.nexmo.com/.
[37] B. Davison, "Learning Web Request Patterns," Web Dynamics, pp. 435-459, 2004.
[38] Apache, "Apache JMeter". [Online]. Available: http://jmeter.apache.org/.
[39] A. van Hoorn, M. Rohr and W. Hasselbring, "Generating Probabilistic and Intensity-Varying Workload for Web-Based Software Systems," Performance Evaluation: Metrics, Models and Benchmarks, pp. 124-143, 2008.
[40] R. Fielding, “Representational state transfer (rest)”. [Online]. Available: https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.
[41] Wikipedia, "CAP Theorem". [Online]. Available: https://en.wikipedia.org/wiki/CAP_theorem.
[42] X. Liu, X. Zhu, S. Singhal and M. Arlitt, "Adaptive entitlement control of resource containers on shared servers," 2005 9th IFIP/IEEE International Symposium on Integrated Network Management, pp. 163-176, Ottawa, Canada, 2005.
[43] N. Gandhi, D. Tilbury, Y. Diao, J. Hellerstein and S. Parekh, "MIMO control of an Apache web server: modeling and controller design," Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), vol. 6, pp. 4922-4927, Anchorage, Alaska, USA, 2002.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *