|
[1] M. Topper, T. Baumgartner, M. Klein, T. Fritzsch, J. Roeder, M. Lutz, M. von Suchodoletz, and H. Oppermann, "Low Cost Wafer-Level 3-D Integration without TSV", Proc. Electronic Components and Technology Conference (ECTC), 2009, pp. 339-344. [2] Y. Okayama, Y. Yanase, K. Saitou, H. Kobayashi, M. Nakasato, T. Yamamoto, and R. Usui, "Development of a novel Wafer-Level-Packaging Technology using Laminating Process", Proc. Electronic Components and Technology Conference (ECTC), 2009, pp. 892-897. [3] X.J. Fan, B. Vaira, and Q. Han, "Design and Optimization of Thermo-mechanical Reliability in Wafer Level Packaging", Microelectronics Reliability, 2010, vol. 50 (4), pp. 536-546. [4] B. Huang, H.D. Chang, S. Liu, M. Liao, L. Lee, S. Lin, and B. Hsu, "Novel Method of Wafer Level Packaging in the Field of MEMS", Proc. Assembly and Circuits Technology Conference (IMPACT), 2012, pp. 303-306. [5] X. Fan, "Wafer Level Packaging (WLP): Fan-in, Fan-out and Three-dimensional Integration", Proc. Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE), 2010, pp. 1-7. [6] T. Hasegawa, H. Abe, and T. Ikeuchi, "Wafer Level Compression Molding Compounds", Proc. Electronic Components and Technology Conference (ECTC), 2012, pp. 1400-1405. [7] C.H. Khong, A. Kumar, X. Zhang, G. Sharma, S.R. Vempati, K. Vaidyanathan, J.H.-S Lau, and D.-L. Kwong, "A Novel Method to Predict Die Shift During Compression Molding in Embedded Wafer Level Package", Proc. Electronic Components and Technology Conference (ECTC), 2009, pp. 535-541. [8] H.S. Ling, B. Lin, C.S. Choong, S.D. Velez, C.T. Chong, and X. Zhang, "Comprehensive Study on the Interactions of Multiple Die Shift Mechanisms During Wafer Level Molding of Multichip-Embedded Wafer Level Packages", Components, Packaging and Manufacturing Technology (CPMT), 2014, vol. 4 (6), pp. 1090-1098. [9] L. Ji, D.V. Sorono, T.C. Chai, and X. Zhang, "3-D Numerical and Experimental Investigations on Compression Molding in Multichip Embedded Wafer Level Packaging", Components, Packaging and Manufacturing Technology (CPMT), 2013, vol. 3 (4), pp. 678-687. [10] L. Ji, H.J. Kim, F.X. Che, S. Gao, and D, Pinjala, "Numerical Study of Preventing Flow-induced Die-shift in the Compression Molding for Embedded Wafer Level Packaging", Proc. Electronics Packaging Technology Conference (EPTC), 2011, pp. 406-411. [11] L. Bu, S. Ho, S.D. Velez, T. Chai, and X. Zhang, "Investigation on Die Shift Issues in the 12-in Wafer-Level Compression Molding Process", Components, Packaging and Manufacturing Technology (CMPT), 2013, vol. 3 (10), pp. 1647-1653. [12] T. Braun, K.-F. Becker, S. Voges, T. Thomas, R. Kahle, J. Bauer, R. Aschenbrenner, and K.-D. Lang, "From Wafer Level to Panel Level Mold Embedding", Proc. Electronic Components and Technology Conference (ECTC), 2013, pp. 1235-1242. [13] A. Kumar, X. Dingwei, V.N. Sekhar, S. Lim, C. Keng, G. Sharma, V.S. Rao, V. Kripesh, J.H. Lau, and D.-L. Kwong, "Wafer Level Embedding Technology for 3D Wafer Level Embedded Package", Proc. Electronic Components and Technology Conference (ECTC), 2009, pp. 1289-1296. [14] G. Pares, C. Bouvier, M. Saadaoui, J. Mazuir, J. Noiray, K. Martinschitz, A. Planchais, and G. Simon, "3D Embedded Wafer-Level Packagin Technology Development for Smart Card SIP Application", Proc. Electronics Packaging Technology Conference (EPTC), 2012, pp. 304-310. [15] R. Rajoo, and X. Zhang, "Moisture Characteristics of Wafer Level Compression Molding Compounds", Proc. Electronics Packaging Technology Conference (EPTC), 2011, pp. 147-152. [16] G. Sharma, A. Kumar, V.S.Rao, S.W. Ho, and V. Kripesh, "Solutions Strategies for Die Shift Problem in Wafer Level Compression Molding", Components, Packaging and Manufacturing Technology (CPMT), 2011, vol. 1 (4), pp. 502-509. [17] C. Scanlan, B. Rogers, T. Olson, C. Bishop, J. Kellar, and B.Y. Jung, "Adaptive Patterning for Panelized Packaging", Proc. International Wafer Level Packaging Conference (IWLPC), 2012. [18] R.M. Waxler, and C.E. Weir, "Effect of Pressure and Temperature on the Refractive Indices of Benzene, Carbon Tetrachloride, and Water", Research of the National Bureau of Standards, 1963, vol. 67A, pp. 163-171. [19] I. Thormahlen, J. Straub, and U. Grigull, "Refractive Index of Water and Its Dependence on Wavelength, Temperature, and Density", Physical and Chemical Reference Data, 1985, vol. 14(4), pp. 933-945. [20] A.N. Bashkatov, and E.A. Genina, "Water refractive index in dependence on temperature and wavelength: a simple approximation", Proc. SPIE, 2003, vol. 5068, pp393-365. [21] T. Braun, K.-F. Becker, S. Voges, J. Bauer, R. Kahle, V. Bader, T. Thomas, R. Aschenbrenner, and K.-D. Lang, "24"×18" Fan-out panel level packing", Proc. Electronic Components and Technology Conference (ECTC), 2014, pp. 940-946. [22] T. Braun, K.-F. Becker, S. Voges, T. Thomas, R. Kahle, V. Bader, J. Bauer, R. Aschenbrenner, and K.-D. Lang, "Challenges and Opportunities for Fan-out Panel Level Packing (FOPLP)", Proc. International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2014, pp.154-157. [23] S. Owa, K. Nakano, H. Nagasaka, T. Fujiwara, T. Matsuyama, Y. Ohmura, and H. Magoon, "Immersion Lithography Ready for 45 nm Manufacturing and Beyond", Proc. Advanced Semiconductor Manufacturing Conference, 2007, pp. 238-244. [24] S.R.J. Brueck, "Optical and Interferometric Lithography-Nanotechnology Enablers", Proc. of the IEEE, 2005, vol. 93 (10), pp. 1704-1721. [25] R.F. Pease, and S.Y. Chou, "Lithography and Other Patterning Techniques for Future Electronics", Proc. IEEE, 2007, vol. 96 (2), pp. 248-270. [26] S. Owa, and H. Nagasaka "Immersion Lithography: its Potential Performance and Issues", Proc. Optical Microlithography, 2003, vol. 5040, pp. 724-733. [27] B.J. Lin, "Immersion lithography and its impact on semiconductor manufacturing", Micro/Nanolithography, MEMS, and MOEM, 2004, vol. 3(3), pp. 377-395. [28] Yole_Nanium Workshop, "Semi Networking Day Packaging – Key for System Integration", YOLE Development, 2013.
|