帳號:guest(3.21.93.155)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何清萱
作者(外文):Ho, Ching Hsuan
論文名稱(中文):針對單電子電晶體之有考慮面積的分解技術的研究
論文名稱(外文):Area-aware Decomposition for Single-Electron Transistor Arrays
指導教授(中文):王俊堯
指導教授(外文):Wang, Chun Yao
口試委員(中文):黃俊達
黃婷婷
口試委員(外文):Huang, Juinn Dar
Hwang, Ting Ting
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:102062521
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:32
中文關鍵詞:Single electron devicesCircuit synthesis
外文關鍵詞:Single-electron circuitCircuit synthesisMinimization methods
相關次數:
  • 推薦推薦:0
  • 點閱點閱:455
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於單電子電晶體(Single-Electron Transistor)在室溫下的操作過程耗能極低,它有望成為能夠延續摩爾定律的裝置。目前既有的單電子電晶體架構之合成方法是將一個布林網路合成成一個高度和主要輸入(Primary Input)個數相同的可重構單電子電晶體架構,然而,近來裝置方面的實驗顯示出此高度受到極低電流的影響,必須限制在一個數字內,例如10,而非任意數。此外,單電子電晶體架構的寬度也建議被縮減。因此,將一個大的單電子電晶體架構分解成多個高度不超過10的單電子電晶體架構是必要的。本論文提出兩個技術來達到面積有效的單電
子電晶體架構之分解:第一項技術是用於縮減單一一個單電子電晶體架構的寬度最小化演算法;另一項技術是深度綁定的映射演算法,用於將一個布林網路分解成多個寬度平衡的子函數。寬度最小化演算法與最先進的技術相比有25%~41%之進步,而映射演算法與簡易映射演算法相比能省下60%之面積。
Single-electron transistor (SET) at room temperature has been demonstrated as a promising device for extending Moore's law due to its ultra-low power consumption.
Existing SET synthesis methods synthesize a Boolean network into a large recongurable SET array where the height of SET array equals the number of primary
inputs. However, recent experiments on device level have shown that this height is restricted to a small number, say 10, rather than arbitrary value due to the ultra-low
driving strength of SET devices. On the other hand, the width of an SET array is also suggested to be a small value. Consequently, it is necessary to decompose a large
SET array into a set of small SET arrays where each of them realizes a sub-function of the original circuit with no more than 10 inputs. Thus, this paper presents two
techniques for achieving area-efficient SET array decomposition: One is a width minimization algorithm for reducing the area of a single SET array; the other is a
depth-bounded mapping algorithm, which decomposes a Boolean network into many sub-functions such that the widths of the corresponding SET arrays are balanced.
The width minimization algorithm leads to a 25%~41% improvement compared to the state-of-the-art, and the mapping algorithm achieves a 60% reduction in total
area compared to a naive approach.
中文摘要i
Abstract ii
Acknowledgement iii
Contents iv
List of Tables vi
List of Figures vii
1 Introduction 1
2 Background 4
2.1 Recongurable SET Array . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Symmetric Fabric Constraint . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Product-term-based SET Array Synthesis . . . . . . . . . . . . . . . . 5
2.4 Branch-then-Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 SET Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 SET Array Width Minimization 7
3.1 BTS Identication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.1 BTS Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Con
icting BTSs Removal . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Exploring Maximal Number of BTS . . . . . . . . . . . . . . . 10
3.2 Synthesis for Width Minimization . . . . . . . . . . . . . . . . . . . . 11
4 Mapping for SET Network 13
4.1 Overview of SET Network Mapping Algorithm . . . . . . . . . . . . . 14
4.2 Cut Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Potential Width Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1 Potential Width Associated with a Cut . . . . . . . . . . . . . 17
4.3.2 The determination of a Bound of Potential Width . . . . . . . 17
4.4 Depth-bounded Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Area Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6 Final Mapping Derivation . . . . . . . . . . . . . . . . . . . . . . . . 20
4.7 Overall Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Experimental Results 22
5.1 Comparison of Width for SET Arrays without Decomposition . . . . 22
5.1.1 Comparison of BTS Exploration Algorithms . . . . . . . . . . 23
5.1.2 Comparison of Overall SET Array Synthesis Flows . . . . . . 23
5.2 Comparison of Total Area in SET Networks . . . . . . . . . . . . . . 24
6 Conclusion 29
[1] R. Bryant, "Graph-based Algorithms for Boolean Function Manipulation," IEEE Trans. Computers, vol. 35, pp. 677-691, Aug. 1986.
[2] H. W. Ch. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, "Carbon Nanotube Single-Electron Transistors at Room Temperature," Science, vol. 293, pp. 76-79, 2001.
[3] Y.-H. Chen, J.-Y. Chen, and J.-D. Huang, "Area Minimization Synthesis for Recongurable Single-Electron Transistor Arrays with Fabrication Constraints," in Proc. Design, Autom. Test in Eur., 2014.
[4] Y.-H. Chen, Y. Chen, and J.-D. Huang, "ROBDD-Based Area Minimization Synthesis for Recongurable Single-Electron Transistor Arrays," in Proc. VLSI Design, Automation and Test, pp. 1-4, 2015.
[5] Y.-C. Chen, S. Eachempati, C.-Y. Wang, S. Datta, Y. Xie, and V. Narayanan, "Automated Mapping for Recongurable Single-Electron Transistor Arrays," in Proc. Design Autom. Conf., pp. 878-883, 2011.
[6] Y.-C. Chen, S. Eachempati, C.-Y. Wang, S. Datta, Y. Xie, and V. Narayanan, "A Synthesis Algorithm for Recongurable Single-Electron Transistor Arrays," ACM Journal on Emerging Technologies in Computing System, vol. 9, no. 1, Article 5, Feb. 2013.
[7] Y.-C. Chen, C.-Y. Wang, and C.-Y. Huang, "Verification of Recongurable Binary Decision Diagram-based Single-Electron Transistor Arrays," IEEE Transasctions on Computer-Aided Design, vol. 32, no. 10, pp. 1473-1483, Oct. 2013.
[8] C.-E. Chiang, L.-F. Tang, C.-Y. Wang, C.-Y. Huang, Y.-C. Chen, S. Datta, and V. Narayanan, "On Recongurable Single-Electron Transistor Arrays Synthesis Using Reordering Techniques," in Proc. Design, Autom. Test in Eur., pp. 1807-1812, 2013.
[9] J. Cong, C. Wu, and Y. Ding, "Cut Ranking and Pruning: Enabling a General and Efficient FPGA Mapping Solution," in Proc. FPGA, pp. 29-36, 1999.
[10] S. Eachempati, V. Saripalli, V. Narayanan, and S. Datta, "Recongurable Bdd-based Quantum Circuits," in Proc. Int. Symp. on Nanoscale Architectures, pp. 61-67, 2008.
[11] G. Fey and R. Drechsler, "Minimizing the Number of Paths in BDDs: Theory and Algorithm," IEEE Transactions on Computer-Aided Design, vol. 25, no. 1, pp. 4-11, Jan. 2006.
[12] H. Hasegawa and S. Kasai, "Hexagonal Binary Decision Diagram Quantum Logic Circuits Using Schottky In-Plane and Wrap Gate Control of GaAs and InGaAs Nanowires," Physica E: Low-dimensional Systems and Nanostructures, vol. 11, pp. 149-154, 2001.
[13] S. Kasai, M. Yumoto, and H. Hasegawa, "Fabrication of GaAs-based Integrated 2-bit Half and Full Adders by Novel Hexagonal BDD Quantum Circuit Approach," in Proc. Int. Symp. on Semiconductor Device Research, pp. 622-625, 2001.
[14] L. Liu, V. Saripalli, E. Hwang, V. Narayanan, and S. Datta, "Multi-Gate Modulation Doped In0.7Ga0.3As Quantum Well FET for Ultra Low Power Digital Logic," Electro Chemical Society Transactions, vol. 35, issue 3, pp. 311-317, 2011.
[15] L. Liu, V. Narayanan and S. Datta, "A Programmable Ferroelectric Single Electron Transistor," Applied Physics Letters, vol. 053505, no. 5, 2013.
[16] L. Liu, X. Li, V. Narayanan and S. Datta, "A Recongurable Low-Power BDD Logic Architecture Using Ferroelectric Single-Electron Transistors," IEEE Transactions on Electron Devices, vol. 62, no. 3, pp.1052-1057, March 2015.
[17] C.-W. Liu, C.-E. Chiang, C.-Y. Huang, C.-Y.Wang, Y.-C. Chen, S. Datta, and V. Narayanan, "Width Minimization in the Single-Electron Transistor Array Synthesis," in Proc. Design, Autom. Test in Eur., 2014.
[18] C.-W. Liu, C.-E. Chiang, C.-Y. Huang, Y.-C. Chen, C.-Y. Wang, S. Datta, V. Narayanan, "Synthesis for Width Minimization in the Single-Electron Transistor Array," IEEE Transactions on VLSI, Feb. 2015.
[19] V. Manohara-rajah, S. D. Brown, and Z. G. Vranesic, "Heuristics for Area Minimization in LUT-based FPGA Technology Mapping," in Proc. International Workshop on Logic and Synthesis, pp. 14-21, 2004.
[20] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, "Combinational and Sequential Mapping with Priority Cuts," in Proc. Int. Conf. Computer-Aided Design, pp. 354-361, 2007.
[21] A. Mishchenko, S. Chatterjee, and R. Brayton, "Improvements to technology mapping for LUT-based FPGAs," IEEE Trans. Computer-Aided Design, vol. 26, no. 2, pp. 240-253, Feb. 2007.
[22] V. Saripalli, L. Liu, S. Datta, and V. Narayanan, "Energy-Delay Performance of Nanoscale Transistors Exhibiting Single Electron Behavior and Associated Logic Circuits," Journal of Low Power Electronics, vol. 6, pp. 415-428, 2010.
[23] Y. T. Tan, T. Kamiya, Z. A. K. Durrani, and H. Ahmed, "Room Temperature Nanocrystalline Silicon Single-Electron Transistors," Journal of Applied Physics, vol. 94, pp. 633-637, 2003.
[24] Z. Zhao, C.-W. Liu, C.-Y. Wang, and W. Qian, "BDD-Based Synthesis of Recongurable Single-Electron Transistor Array," in Proc. Int. Conf. Computer-Aided Design, pp. 47-54, 2014.
[25] L. Zhuang, L. Guo, and S. Y. Chou, "ilicon Single-Electron Quantum-Dot Transistor Switch Operating at Room Temperature," Applied Physics Letters, pp. 1205-1207, 1998.
[26] Weisstein, Eric W. "Mixed Graph." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/MixedGraph.html
[27] F. Somenzi, CUDD: CU decision diagram package - release 2.4.2, 2009.
[28] Berkeley Logic Synthesis and Verication Group. ABC: http://www.eecs.berkeley.edu/~alanmi/abc/
[29] http://iwls.org/iwls2005/benchmarks.html
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *