帳號:guest(18.188.224.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李明潔
作者(外文):Lee, Ming Chieh
論文名稱(中文):基於Segment Routing在軟體定義網路下之有效率路由演算法
論文名稱(外文):An Efficient Routing Algorithm based on Segment Routing in Software-Defined Networking
指導教授(中文):許健平
指導教授(外文):Sheu, Jang Ping
口試委員(中文):徐正炘
逄愛君
口試委員(外文):Hsu, Cheng Hsin
Pang, Ai Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:102062516
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:31
中文關鍵詞:路由演算法軟體定義網路
外文關鍵詞:Routing AlgorithmSoftware-Defined Networking
相關次數:
  • 推薦推薦:0
  • 點閱點閱:754
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
軟體定義網路是一個新興且快速發展的網路架構,而Segment Routing則是定義利用封包標頭中的MPLS標籤欄位來表示封包的路由資訊。透過軟體定義網路與Segment Routing的結合應用,使軟體定義網路的路由管理更加有效率與簡單化並且解決在軟體定義網路中所遇到的可擴展性議題。我們提出一個啟發式的演算法使之應用在軟體定義網路與Segment Routing的環境中。演算法的目標為替網路單點傳輸要求提供一條滿足頻寬需求的路由資訊,同時可以平衡網路流量負載與避免因為封包標頭中MPLS標籤的增加所造成網路額外的傳輸成本。我們的演算法考慮了網路鏈接的重要性與其剩餘頻寬來設計網路鏈接的權重,並且限制封包標頭中標籤的個數來節省網路資源。模擬結果顯示我們所提出的演算法之於其他演算法在多個不同大小的網路拓樸下皆可以容納更多的流量需求與達到更好的網路吞吐量。
Software-Defined Networking (SDN) is an emerging architecture and it offers advantages over traditional network architecture. Segment Routing (SR) defines the path information through the network via an ordered list of MPLS labels on the packet header at the ingress device and makes SDN routing management more efficient and simple. It can also solve some scalability issues in SDN. In this thesis, we propose a routing algorithm for SDN with SR to serve the bandwidth requirement of a routing request. Our algorithm considers the balance of traffic load and reduces the extra cost of the packet header size in a network. Simulation results show that the performance of our algorithm is better than previous work in terms of average network throughput and average rejection rate of routing requests.
Chapter 1 Introduction 1
Chapter 2 Related Works 4
2.1 Preliminary of Segment Routing 4
2.2 Traffic Engineering 7
Chapter 3 Routing Algorithm 10
3.1 Problem Definition 10
3.2 Routing Algorithm 11
3.3 Time Complexity 18
Chapter 4 Performance Evaluation 20
4.1 Simulation Results 20
Chapter 5 Conclusion 28
References 29
[1] ONF Market Education Committee. “Software-Defined Networking: The New Norm for Networks,” ONF White Paper, Palo Alto, US: Open Networking Foundation, April 2012.
[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus Networks,” ACM SIGCOMM Computer Communication Review, Volume 38 Issue 2, April 2008.
[3] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing Tables in Software-Defined Networks,” Proceedings of IEEE INFOCOM, April 2013.
[4] “Segment Routing Architecture.” Internet Engineering Task Force Draft, http://tools.ietf.org/html/draft-previdi-filsfils-isis-segment-routing, September 2014.
[5] “SDN State Reduction.” Internet Engineering Task Force Draft, https://tools.ietf.org/html/draft-ashwood-sdnrg-state-reduction-00, July 2013.
[6] S. Agarwal, M. Kodialam, T. V. Lakshman, “Traffic engineering in software defined networks,” Proceedings of IEEE INFOCOM, pp. 2211-2219, April 2013.
[7] “OpenFlow Switch Specification.” http://www.openflow.org.
[8] M. Kodialam and T. V. Lakshman, “Minimum interference routing with applications to MPLS traffic engineering,” Proceedings of IEEE INFOCOM, pp. 884-893, April 2000.
[9] R. Guerin, D. Williams, A. Orda, “QoS routing mechanisms and OSPF extensions,” IETF RFC 2676, August 1999.
[10] Z. Wang and J. Crowcroft, “Quality of Service routing for supporting multimedia applications,” IEEE Journal on Selected Areas in Communications, vol. 14, pp.1228-1234, September 1996.
[11] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional IP routing protocols,” IEEE Communications Magazine, vol. 40, no. 10,pp. 118-124, October 2002.
[12] S.H. Yeganeh, A. Tootoonchian, Y. Ganjali, “On Scalability of Software-Defined Networking,” IEEE Communications Magazine, vol.51, no.2, pp.136-141, February 2010.
[13] M. Malboubi, L. Wang, C.N. Chuah, and P. Sharma, “Intelligent SDN based Traffic (de)Aggregation and Measurement Paradigm (iSTAMP),” Proceedings of IEEE INFOCOM, pp. 934-942, May 2014.
[14] T. Korkmaz, M. Krunz, S. Tragoudas, K. Kompella, “An efficient algorithm for finding a path subject to two additive constraints,” Proceedings of ACM SIGMETRICS, 2000.
[15] C. Zhang, Y. Liu, W. Gong, J. Kurose, R. Moll, and D. Towsley, “On optimal routing with multiple traffic matrices,” Proceedings of IEEE INFOCOM, pp. 607 – 618, March 2005.
[16] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: traffic matrix estimator for openflow networks,” Proceedings of PAM, pp. 201–210, 2010.
[17] L.C. Freeman, “Centrality in Social Networks: Conceptual Clarification,” Social Networks, pp. 215–239, 1979.
[18] N. Katoh, T. Ibaraki, and H. Mine, “An efficient algorithm for K shortest simple paths,” Networks, vol. 12, pp. 411–427, 1982.
[19] Y. Han, F. Moutarde, “Statistical traffic state analysis in large-scale transportation networks using locality-preserving non-negative matrix factorization,” Intelligent Transport Systems, IET, pp. 283–295, 2013.
[20] R. Gu´erin and A. Orda, “Computing shortest paths for any number of hops,” IEEE/ACM Trans. Networking, Vol. 10, No. 5, pp. 613–620, October 2002.
[21] S. Upadhaya, G. Devi, “Characterization of QoS Based Routing Algorithms,” International Journal of Computer Science & Emerging Technologies, Volume 1, Issue 3, October 2010.
[22] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, MA, 1990.
[23] S. Deng and H. Balakrishnan, “Traffic-aware techniques to reduce 3G/LTE wireless energy consumption,” Proceedings of CoNEXT, pp. 181–192, 2012.
[24] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine Grained Traffic Engineering for Data Centers,” Proceedings of CoNEXT, 2011.
[25] R. Jain and S. Routhier, “Packet Trains-Measurements and a New Model for Computer Network Traffic,” IEEE Journal on Selected Areas in Communications, pp. 986–995, September 2006.
[26] K. Kannan and S. Banerjee, “Compact TCAM: Flow entry compaction in TCAM for power aware SDN,” Distributed Computing and Networking, pp. 439-444, 2013.
[27] A. Juttner, B. Szviatovszki, I. Mecs, and Z. Rajko, “Lagrange relaxation based method for the QoS routing problem,” Proceedings of IEEE INFOCOM, pp. 859-868, April 2001.
[28] P. Khadavi, S. Samavi, T.D. Todd, and H. Saidi, “Multi-constraint QoS routing using a new single mixed metric,” Journal of Network and Computer Applications, pp. 656-676, 2008.
[29] T. Korkmaz and M. Krunz, “Multi-constrained optimal path selection,” Proceedings of IEEE INFOCOM, vol. 2, pp. 834-843, April 2001.
[30] B.M. Waxman, “Routing of Multipoint Connections,” IEEE Journal on Selected Areas in Communications, pp. 1617–1622, December 1988.
[31] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing OSP weights,” Proceedings of INFOCOM, March 2000.
[32] B. Fortz and M. Thorup, “OSPF/IS-IS weights in a changing world,” IEEE Journal on Selected Areas in Communications, vol. 4, no. 2, pp. 756-767, February 2002.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *