帳號:guest(3.137.213.98)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱財德
作者(外文):Chu,Tsai-Te
論文名稱(中文):基於指紋特徵點磁碟式編碼之指紋辨識與硬體實現
論文名稱(外文):Design and Implementation of Fingerprint Recognition Using Minutiae Disk Code (MDC)
指導教授(中文):邱瀞德
指導教授(外文):Chiu,Ching-Te
口試委員(中文):賴尚宏
李國君
口試委員(外文):Lai,Shang-Hong
Lee,Gwo-Giun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:102062514
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:67
中文關鍵詞:指紋辨識指紋特徵點圓柱式編碼指紋特徵點立方體式編碼指紋特 徵點磁碟式編碼
外文關鍵詞:Fingerprint RecognitionMinutiae Cylinder CodeMinutiae Cubic Structure CodeMinutiae Disk Code
相關次數:
  • 推薦推薦:0
  • 點閱點閱:507
  • 評分評分:*****
  • 下載下載:24
  • 收藏收藏:0
指紋是相當可靠且獨特的生物特徵並常被應用於身分識別與保密安全上,近年來,行動裝置上也開始具有指紋的感測器來辨識使用者,對使用者而言,準確度與辨識的時間是相當重要的課題。有許多的研究在於提升指紋辨識的準確度與降低其辨識的時間;指紋特徵點圓柱式編碼(Minutiae Cylinder Code(MCC))是一項編碼的技術,記錄了指紋特徵點與周邊其他特徵點的相對分布關係,並使用區域與全域的比對來提升準確度,在指紋辨識上有很好的表現;然而其計算時間相當的長,因此,我們提出指紋特徵點立方體式編碼(Minutiae Cubic Structure Code (MCSC)),藉由簡化指紋特徵點圓柱式編碼的計算來達到降低指紋特徵點圓柱式編碼的辨識時間;我們更提出指紋特徵點磁碟式編碼(Minutiae Disk Code (MDC))的方法,更有效率與清楚地記錄與呈現鄰近特徵點的關係與分布情形,此方法在區域特徵編碼上比圓柱式編碼有280.08倍的加速,此外,提出的指紋特徵點磁碟式編碼在FVC2000與FVC2002的資料庫中有平均96.81%的辨識率。
在硬體實作指紋特徵點磁碟式編碼中,對於在全域比對中的疊代運算採用了平行計算來加速指紋比對,此設計在TSMC 90nm的製程下的晶片核心面積為0.48mm2並達到工作頻率111MHz,在大小為255x255最多64個指紋特徵點的指紋影像上達到每秒1234次的指紋比對(每次比對花費0.81ms),相較於MCC的方法有141.27倍的加速。
Fingerprint is one of the reliable and unique biometric features for the application of identity secure. Nowadays, mobile devices are also equipped with fingerprint sensor. The accuracy and the response time are important for the users. There are many researches aimed at raise the accuracy and reduce the computation time of fingerprint recognition. Minutiae cylinder code (MCC) is a coding method to encode the local neighbor minutiae and apply the local and global matching for fingerprint comparison, which has great performance on fingerprint recognition. However, the computation time of the MCC is high. Therefore, we proposed a minutiae cubic structure code (MCSC) method to speed up the computation time by simplifying the complex computation of the MCC. Furthermore, we proposed a new disk structure to encode the local structure for each minutia. The proposed minutiae disk code (MDC) encodes the neighbor minutiae more efficiently and clearly illustrate the distribution of the neighbor minutiae. The MDC method reduces the computation time by having 280.08x speed up in MCC encoding part on Matlab platform. In addition, the proposed MDC approach has high distinguish ability of the 96.81% recognition rate on the FVC2000 and FVC2002 datasets.
The hardware implementation of MDC applies parallel computing on the relaxation process of global matching to accelerate the fingerprint comparison time. The implementation can achieve the operating frequency of 111MHz, conducting one fingerprint comparison of 0.81ms, which can process 1234 fingerprint images per second with the image size of 255x255 and the maximum of 64 minutiae, and with the core area of 0.48mm2 under TSMC 90nm technology. The hardware implementation has 141.27x speed up than the MCC method.
1 Introduction --1
1.1 Motivation -- 1
1.2 Related Work -- 2
1.3 Goal and Contribution -- 5
1.4 Thesis Organization -- 7
2 Minutiae Cylinder Code (MCC) --8
3 Minutiae Cubic Structure Code (MCSC) --14
4 Minutiae Disk code (MDC) --19
4.1 Overview -- 19
4.2 Comparison Between MCC, MCSC, and MDC -- 20
4.3 MDC Structure -- 21
4.4 Local Similarity Between Two MDCs -- 27
4.5 Global Score -- 29
4.5.1 Pairs Selection by Local Greedy (LG) Algorithm -- 29
4.5.2 Relaxation and Final Global Score -- 30
5 Performance Evaluation --33
5.1 Setting of Simulation Environments -- 33
5.2 The Influence of MCSC parameters --34
5.3 The Influence of MDC parameters -- 37
5.4 Software Simulation Results -- 40
6 Hardware Implementation of MDC Based Fingerprint Recognition --44
6.1 Overview -- 44
6.2 Create MDC Unit -- 48
6.3 Local Similarity Calculation Unit -- 49
6.4 Relaxation and Global Score Unit -- 51
6.5 Implementation Results -- 53
7 Conclusions --61
[1] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, “Handbook of fingerprint recognition,” Springer-Verlag, 2003.
[2] L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 777–789, Aug 1998.
[3] S. Chikkerur, A. N. Cartwright, and V. Govindaraju, “Fingerprint enhancement using stft analysis,” Pattern Recog., no. 1, pp. 198–211, 2007.
[4] J. Bartunek, M. Nilsson, B. Sallberg, and I. Claesson, “Adaptive fingerprint image enhancement with emphasis on preprocessing of data,” IEEE Transactions on Image Processing, no. 2, pp. 644–656, Feb. 2013.
[5] J. Yang, N. Xiong, and A. Vasilakos, “Two-stage enhancement scheme for low-quality fingerprint images by learning from the images,” IEEE Transactions on Human-Machine Systems, no. 2, pp. 235–248, March 2013.
[6] J. C. Amengual, A. Juan, J. C. Pdrez, F. Prat, S. Sez, and J. M. Vilar, “Real-time minutiae extraction in fingerprint images,” In Proc. of the 6th Int. Conf. on Image Processing and its Applications, pp. 871–875, July 1997.
[7] E. Liu, H. Zhao, J. Liang, L. Pang, M. Xie, and H. Chen, “A key binding system based on n-nearest minutiae structure of fingerprint,” Pattern Recognition, pp. 666–675, April 2011.
[8] A. Ross, A. Jain, and J. Reisman, “A hybrid fingerprint matcher,” Pattern Recognition, pp. 166–1673, August 2002.
[9] N. Ratha, K. Karu, S. Chen, and A. Jain, “A real-time matching system for large fingerprint databases,” IEEE trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 8, pp. 799–813, 1996.
[10] S. Chang, F. Cheng, W. Hsu, and G. Wu, “Fast algorithm for point pattern matching invariant to translations, rotations and scale change,” Pattern Recognition, vol. 30, pp. 311–320, 1997.
[11] A. Jain and L. Hong, “On-line fingerprint verification,” Pattern Recog. (ICPR), pp. 596–600, August 1996.
[12] V. K. Alilou, “Fingerprint matching: A simple approach.” [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/44369-
fingerprint-matching–a-simple-approach
[13] J. Feng, Z. Ouyang, and A. Cai, “Fingerprint matching using ridges,” Pattern Recognition, pp. 2131–2140, 2006.
[14] A. Hrechak and J. McHugh, “Automated fingerprint recognition using structural matching,” Pattern Recognition, pp. 893–904, 1990.
[15] A. Willis and L. Myers, “A cost-effective fingerprint recognition system for use with low-quality prints and damaged fingertips,” Pattern Recognition, vol. 34, pp. 255–270, 2001.
[16] X. Jiang and W. Yau, “Fingerprint minutiae matching based on local and global structures,” Int. Conf. Pattern Recognition, vol. 2, pp. 6038–6041, 2000.
[17] N. Ratha, V. D. Pandit, R. M. Bolle, and V. Vaish, “Robust fingerprint authentication using local structural similarity,” Proc. IEEE Workshop Applications of Computer Vision,, pp. 29–34, 2000.
[18] G. Parziale and A. Niel, “A fingerprint matching using minutiae triangulation,” in Proc. Biom. Authenticat., pp. 241–2482, 2004.
[19] H. Deng and Q. Huo, “Minutiae matching based fingerprint verification using delaunay triangulation and algined-edge-quided triangle matching,” in Proc. 5th internaltional AVBPA conference, pp. 270–278, 2005.
[20] X. Linag, A. Bishnu, and T. Asano, “A robust fingerprint indexing scheme using minutia neighborhood structure and low-order delaunay triangles,” IEEE trans. Information Forensics and Security, vol. 2, no. 4, pp. 721–733, 2007.
[21] W. Yang, J. Hu, and S. Wang, “A delaunay quadrangle-based fingerprint authentication system with template protection using topology code for local registration and security enhancement,” IEEE Transactions on Information Forensics and Security, pp. 1179–1192, July 2014.
[22] R. Cappelli, M. Ferrara, and D. Maltoni, “Minutiae cylinder-code: A new representation and matching technique for fingerprint recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, pp. 2128–2141, December 2010.
[23] A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in Proc. 6th ACM Conf. Comput. Commun. Security, pp. 28–36, 1999.
[24] A. Juels and M. Sudan, “A fuzzy vault scheme,” Des., Codes Cryptogr., vol. 38, no. 2, pp. 237–257, 2006.
[25] H. Kuhn, “The hungarian method for the assignement problem,” Naval Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.
[26] R. Cappelli, M. Ferrara, D. Maltoni, and M. Tistarelli, “Mcc: a baseline algorithm for fingerprint verification in fvc-ongoing,” Int. Conf. Control, Automation, Robotics and Vision, pp. 19–23, 2010.
[27] BioLab, “The fvc2000 datasets,” 2015. [Online]. Available: http://bias.csr.unibo.it/fvc2000
[28] BioLab., “The fvc2002 datasets,” 2015. [Online]. Available: http://bias.csr.unibo.it/fvc2002
[29] M. Fons, F. Fons, and E. Canto, “Embedded vlsi accelerators for fingerprint signal processing,” IEEE International Symposium on Intelligent Signal Processing, pp. 1–6, 2007.
[30] A. Alilla, M. Faccio, T. Vali, G. Marotta, and L. DeSantis, “A new low cost fingerprint recognition system on fpga,” IEEE International conf. on Industrial Technology(ICIT), pp. 988–993, 2013.
[31] P. D. Gutierrez, M. Lastra, F. Herrera, and J. M. Benotez, “A high performance fingerprint matching system for large databases based on gpu,” IEEE Trans. Information Forensics and Security, pp. 62–71, January 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *