|
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Susstrunk, S. (2012). Slic superpixels compared to state-of-the-art superpixel methods. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(11), 2274–2282. Alexe, B., Deselaers, T., & Ferrari, V. (2010). What is an object? In Computer vision and pattern recognition (cvpr), 2010 ieee conference on (pp. 73–80). Alexe, B., Deselaers, T., & Ferrari, V. (2012). Measuring the objectness of image windows. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(11), 2189–2202. Branson, S., Beijbom, O., & Belongie, S. (2013). Efficient large-scale structured learning. In Computer vision and pattern recognition (cvpr), 2013 ieee conference on (pp.1806–1813). Bruce, N., & Tsotsos, J. (2006). Saliency based on information maximization. Advances in neural information processing systems, 18, 155. Carreira, J., & Sminchisescu, C. (2012). Cpmc: Automatic object segmentation using constrained parametric min-cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(7), 1312–1328. Cheng, M.-M., Zhang, G.-X., Mitra, N. J., Huang, X., & Hu, S.-M. (2011). Global contrast based salient region detection. In Computer vision and pattern recognition (cvpr), 2011 ieee conference on (pp. 409–416). Cheng, M.-M., Zhang, Z., Lin, W.-Y., & Torr, P. H. S. (2014). BING: Binarized normed gradients for objectness estimation at 300fps. In Computer vision and pattern recognition (cvpr), 2014 ieee conference on. Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Computer vision and pattern recognition (cvpr), 2005 ieee conference on (Vol. 1, pp. 886–893). Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (n.d.). Imagenet large scale visual recognition competition 2012 (ilsvrc2012). http://http://www.image- net.org/challenges/LSVRC/2012/. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In Computer vision and pattern recognition (cvpr), 2009 ieee conference on (pp. 248–255). Dollár, P., & Zitnick, C. L. (2013). Structured forests for fast edge detection. In Computer vision (iccv), 2011 ieee international conference on. Duan, L., Wu, C., Miao, J., Qing, L., & Fu, Y. (2011). Visual saliency detection by spatially weighted dissimilarity. In Computer vision and pattern recognition (cvpr), 2011 ieee conference on (pp. 473–480). Endres, I., & Hoiem, D. (2010). Category independent object proposals. In Computer vision (eccv), 2010 european conference on (pp. 575–588). Springer. Endres, I., & Hoiem, D. (2014). Category-independent object proposals with diverse ranking. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 36(2), 222-234. Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2), 303–338. Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (n.d.). The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). Liblinear: A library for large linear classification. The Journal of Machine Learning Research, 9, 1871–1874. Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: a priority map for target selection. Trends in cognitive sciences, 10(8), 382–390. Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010). Object detection with discriminatively trained part-based models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(9), 1627–1645. Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmen- tation. International Journal of Computer Vision, 59(2), 167–181. Fidler, S., Mottaghi, R., Yuille, A., & Urtasun, R. (2013). Bottom-up segmentation for top-down detection. In Computer vision and pattern recognition (cvpr), 2013 ieee conference on (pp. 3294–3301). Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Computer vision and pattern recognition (cvpr), 2014 ieee conference on. Hare, S., Saffari, A., & Torr, P. H. (2012). Efficient online structured output learning for keypoint-based object tracking. In Computer vision and pattern recognition (cvpr), 2012 ieee conference on (pp. 1894–1901). Hariharan, B., Malik, J., & Ramanan, D. (2012). Discriminative decorrelation for clus- tering and classification. In Computer vision (eccv), 2012 european conference on (pp. 459–472). Springer. Itti, L., Koch, C., Niebur, E., et al. (1998). A model of saliency-based visual attention for rapid scene analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(11), 1254–1259. Jia, Y. (2013). Caffe: An open source convolutional architecture for fast feature embedding. Lang, C., Nguyen, T. V., Katti, H., Yadati, K., Kankanhalli, M., & Yan, S. (2012). Depth matters: Influence of depth cues on visual saliency. In Computer vision (eccv), 2012 european conference on (pp. 101–115). Springer. Li, N., Ye, J., Ji, Y., Ling, H., & Yu, J. (2014). Saliency detection on light field. In Computer vision and pattern recognition (cvpr), 2014 ieee conference on. Li, X., Lu, H., Zhang, L., Ruan, X., & Yang, M.-H. (2013). Saliency detection via dense and sparse reconstruction. In Computer vision (iccv), 2013 ieee international conference on (pp. 2976–2983). Mai, L., Niu, Y., & Liu, F. (2013). Saliency aggregation: A data-driven approach. In Computervisionandpatternrecognition(cvpr), 2013ieeeconferenceon(pp.1131– 1138). Maki, A., Nordlund, P., & Eklundh, J.-O. (2000). Attentional scene segmentation: in- tegrating depth and motion. Computer Vision and Image Understanding, 78(3), 351–373. Malisiewicz, T., Gupta, A., & Efros, A. A. (2011). Ensemble of exemplar-svms for object detection and beyond. In Computer vision (iccv), 2011 ieee international conference on (pp. 89–96). Uijlings, J. R., van de Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective search for object recognition. International journal of computer vision, 104(2), 154–171. Valenti, R., Sebe, N., & Gevers, T. (2009). Image saliency by isocentric curvedness and color. In Computer vision (iccv), 2009 ieee international conference on (pp. 2185–2192). van de Sande, K. E., Uijlings, J. R., Gevers, T., & Smeulders, A. W. (2011). Segmentation as selective search for object recognition. In Computer vision (iccv), 2011 ieee international conference on (pp. 1879–1886). Wei, Y., Wen, F., Zhu, W., & Sun, J. (2012). Geodesic saliency using background priors. In Computer vision (eccv), 2012 european conference on (pp. 29–42). Springer. Wertheim, A. (2010). Visual conspicuity: A new simple standard, its reliability, validity and applicability. Ergonomics, 53(3), 421–442. Yan, Q., Xu, L., Shi, J., & Jia, J. (2013). Hierarchical saliency detection. In Computer vision and pattern recognition (cvpr), 2013 ieee conference on (pp. 1155–1162). Yang, C., Zhang, L., Lu, H., Ruan, X., & Yang, M.-H. (2013). Saliency detection via graph-based manifold ranking. In Computer vision and pattern recognition (cvpr), 2013 ieee conference on (pp. 3166–3173). Zhang, Z., Warrell, J., & Torr, P. H. (2011). Proposal generation for object detection using cascaded ranking svms. In Computer vision and pattern recognition (cvpr), 2011 ieee conference on (pp. 1497–1504). |