帳號:guest(3.145.109.219)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張庭豪
作者(外文):Chang, Ting Hao
論文名稱(中文):分切合整數位控制隔離型雙級降壓直流/直流轉換器
論文名稱(外文):D-Σ Digital Control for Isolated Two-Stage Step-Down DC/DC Converter
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai Fu
口試委員(中文):潘晴財
賴炎生
陳科宏
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061618
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:91
中文關鍵詞:分切合整數位控制寬感值變化直流/直流轉換器不連續導通模式
外文關鍵詞:D-Σ digital controlwide inductance variationdc/dc converters and discontinuous conduction mode
相關次數:
  • 推薦推薦:0
  • 點閱點閱:292
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究提出一基於分切合整數位控制之隔離型雙級降壓直流/直流轉換器,其電路架構前級為降壓型轉換器(buck converter),後級為全橋轉換器(full-bridge converter)搭配倍流整流電路(current-doubler rectifier)。其中全橋轉換器則採用相移切換方式(phase-shift switching),達到零電壓導通以降低切換損失。本研究提出分切合整數位控制(D-Σ digital control)應用於直流/直流轉換器中,基於此控制法,轉換器允許寬電感值變化,即使電感值隨著電流變大而衰減,仍能避免電流發生振盪,並準確追蹤電流命令。本論文詳細推導出用於直流/直流轉換器之分切合整數位控制法則,且修正過去分切合整數位控制僅能應用於連續電流導通模式(CCM)之限制,使轉換器即使於不連續導通模式(DCM)下仍能夠穩定提供負載需求。
傳統常見應用於直流/直流轉換器之控制法如尖峰電流控制(peak current-mode control)與平均電流控制(average current-mode control)。尖峰電流控制容易因電流峰值與平均值差異造成輸出電壓穩態誤差。而當負載瞬間抽載時,平均電流控制因電流內迴路存在低通濾波器之緣故,動態響應速度慢,本論文亦模擬驗證了分切合整數位控制相較於上述兩傳統控制法,擁有更低之系統穩態誤差以及更快之動態響應速度。最後本研究實現一部額定功率2.6 kW,輸出電壓26 V之直流/直流轉換器,同時亦驗證分切合整數位控制應用於直流/直流轉換器之特點與可行性。
This thesis presents design and implementation of an isolated two-stage dc/dc converter with division-summation (D-Σ) digital control. The first stage is a buck converter, and the second stage is a full-bridge converter with current-doubler rectifier which is controlled with phase-shift switching method. Therefore, the primary-side power devices can achieve zero voltage switching. With D-Σ digital control, the converter is allowed to have wide inductance variation caused by high current flowing through inductor, and to track current reference precisely for achieving tight output voltage regulation. This paper derives D-Σ control law for dc/dc converter in detail, and initiates the application of D-Σ control in DCM operation.
The major contributions of this paper is: this research applies D-Σ digital control on dc/dc converter unprecedentedly, and verify that the control can reduce steady-state error as compared with peak current-mode control and achieve faster dynamic response over average current-mode control. Moreover, it presents a modified D-Σ control law for DCM operation to enables the applicability of the control in both CCM and DCM operation. Last, the research implements a high voltage step-down dc/dc converter with input voltage 600 V, output voltage 26 V and power rating 2.6 kW.
摘 要 I
Abstract II
目 錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 直流/直流轉換器種類 2
1.3 控制方法回顧 4
1.3.1 單電壓控制 4
1.3.2 尖峰電流模式控制 5
1.3.3 平均電流模式控制 5
1.3.4 分切合整數位控制(D-Σ Digital Control) 6
1.4 論文架構 7
第二章 直流/直流轉換器與控制 9
2.1 隔離型全橋轉換器 9
2.1.1 電路架構 9
2.1.2 動作原理 10
2.2 降壓型轉換器 15
2.2.1 電路架構 16
2.2.2 動作原理 16
2.3 轉換器建模 19
2.3.1 隔離型全橋轉換器建模 19
2.3.2 分切合整數位控制法則 21
2.4 電容電流補償機制 22
2.4.1 機制介紹 22
2.4.2 電流命令推導 23
2.5 不連續電流導通模式 25
2.6 相移切換實現方式 30
第三章 控制韌體規劃 32
3.1 微處理器介紹 33
3.2 程式流程 35
3.2.1 主程式流程 35
3.2.2 保護副程式 37
3.2.3 軟啟動副程式 38
3.2.4 A/D中斷副程式 40
第四章 轉換器周邊電路 42
4.1 輔助電源 42
4.2 電壓保護電路 44
4.3電壓偵測與保護電路 44
4.4電流偵測與保護電路 45
4.5 硬體保護電路 47
4.6 開關隔離驅動電路 48
第五章 轉換器製作與實務考量 50
5.1 連續導通模式操作 50
5.1.1 電器規格 50
5.1.2量測波形結果 52
5.1.3 電感值變化 62
5.1.4 ZVS軟切換驗證 65
5.2不連續導通模式修正 67
5.3實務考量 68
5.3.1 有效責任比率 69
5.3.2 微處理器RX62T設定之限制 71
5.3.3隔直器設計 72
5.3.4 輔助電源功率開關電壓突波 74
5.3.5 電流振盪問題 77
5.4 電路效率分析 79
5.4.1元件耗損估算 79
5.4.2轉換效率 82
5.5 實體電路 82
第六章 結論與未來研究方向 84
6.1結論 84
6.2未來研究方向 85
參考文獻 87
[1] 經濟部能源局,2007 年能源科技研究發展白皮書,2007。
[2] 立凱電能科技股份有限公司,〝http://www.aleees.com/tw/product/e-bus01/low-floor-ebus.html〞,2015年5月10日。
[3] X. Ruan, J Wang and Q. Chen, “An Improved Current-Doubler-Rectifier ZVS PWM Full-Bridge Converter,” Proceedings of Power Electronics Specialists Conference, Vol. 4, pp. 1749-1755, 2001.
[4] C. L. Shen, C. T. Tsai and Y. E. Wu, “High Efficiency Current-Doubler Rectifier with Low Output Current Ripple and High Step-Down Voltage Ratio,” Proceedings of Sustainable Energy Technologies, Vol. 1, pp. 872-876, 2008.
[5] B. R. Lin, S. C. Tsay, C. S. Yang and C. L. Huang, “ZVS DC-DC Converter with Parallel-Connected Current Doubler Rectifier,” Proceedings of Power Electronics and Motion Control Conference, Vol. 2, pp. 1-5, 2006.
[6] P. Xu, Q. Wu, P. L. Wong and F. C. Lee, “A Novel Integrated Current Doubler Rectifier,” Proceedings of Applied Power Electronics Conference, Vol. 2, pp. 735-740, 2000.
[7] Y. Lu, H. Wu, X. Yan , T. Mu, H. Liu and X. Ma, “A Soft-switching Dual-Phase-Shift Controlled Full-Bridge Converter with Voltage-Doubler for Wide Voltage Range Applications,” Proceedings of Applied Power Electronics Conference and Exposition (APEC), Vol. 1, pp. 1112-1117, 2014.
[8] B. Y. Chen and Y. S. Lai, “Switching Control Technique of Phase-Shift Controlled Full-Bridge Converter to Improve Efficiency Under Light-Load and Standby Conditions Without Additional Auxiliary Components,” IEEE Trans. Power Electron., Vol. 25, No. 4, pp. 1001-1012, Apr. 2010.
[9] J. W. Kim, D. Y. Kim, C. E. Kim, M. Y. Kim and G. W. Moon, “Switching Control Method for Light Load Efficiency Improvement in Phase Shifted Full Bridge Converter,” Proceedings of ECCE Asia Downunder (ECCE Asia), pp. 165-169, 2013.
[10] K. Suzuoka, S. Moisseev, L. Gamage, K. Soshin, K. Nishida and M. Nakaoka, “Boost Transformer Linked Full Bridge Soft-Commutation DC-DC Power Converter with Secondary-Side Phase-Shifted PWM Rectifier Switches,” Proceedings of Industrial Electronics Society, Vol. 1, No. 1, pp. 49-54, 2003.
[11] 吳岳樺,昇壓型架接全橋隔離型轉換器研製,國立中正大學電機工程研究所博士論文,2014年7月。
[12] J. K. Chatterjee and P. J. Chauhan, “Single-Loop Vs Two-Loop Voltage and Frequency Control of Isolated SEIG Based RECS,” Proceedings of Energy, Automation, and Signal (ICEAS), pp. 1-6, 2011.
[13] P. J. Chauhan, and J. K. Chatterjee, “Single-Loop Voltage and Frequency Control Schemes for SEIG-Battery Storage Based Stand-Alone Three-Phase Four-Wire RECS,” Proceedings of Power and Energy Systems (ICPS), pp. 1-6, 2011.
[14] J. P. Gegner and C. Q. Lee, “Linear Peak Current Mode Control: A Simple Active Power Factor Correction Control Technique for Continuous Conduction Mode,” Proceedings of Power Electronics Specialists Conference, pp. 196-202, 1996.
[15] I. J. Prasuna, M. S. Kavya, K. Suryanarayana, and B. R. Shrinivasa, “Digital Peak Current Mode Control of Boost Converter,” Proceedings of Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD), pp. 1-6, 2014
[16] M. Hallworth and S. A. Shirsavar, “Microcontroller-Based Peak Current Mode Control Using Digital Slope Compensation,” IEEE Trans. Power Electron., Vol. 27, No. 7, pp. 3340-3351, July 2012.
[17] S. M. O'Driscoll and D. A. Grant, “Combining Peak Current Mode Control with Average Current Mode Control Using Digitally Assisted Analog,” Proceedings of Applied Power Electronics Conference and Exposition (APEC), pp. 76-88, 2014.
[18] L. H. Dixon, “Average Current-Mode Control of Switching Power Supplies,” Proceedings of Unitrode Power Supply Design Seminar Handbook, 1990.
[19] Y. S. Jung, J. Y. Lee and M. J. Youn, ”A New Small Signal Modeling of an Average Current Mode Control,” Proceedings of Power Electronics Specialists Conference, Vol. 2, pp. 1118-1124, 1998.
[20] W. Tang, F. C. Lee, and R. B. Ridley, “Small-Signal Modeling of Average Current-Mode Control,” Proceedings of Power Electronics Specialists Conference, pp. 2, No. 747-755, 1992.
[21] T.-F. Wu, C.-H. Chang, C.-L. Lin and H.-C. Hsieh, “D-Σ Digital Control for Three-Phase Bi-Directional Inverters,” Proceedings of ECCE Asia Downunder (ECCE Asia), pp. 73-79, 2013.
[22] 張智豪,允許寬廣電感值之三相雙向換流器分切合整數位控制,國立中正大學電機工程研究所博士論文,2013年7月。
[23] 蔡昆宏,分切合整數位控制與兩相或空間向量調變之三相雙向換流器性能比較,國立清華大學電機工程研究所博士論文,2014年7月。
[24] RX62T Group Datasheet Rev. 1.10, Renesas, 2011.
[25] 漆包線規格表網站 http://www.dz3w.com/info/parameters/0081927.html
[26] 銅箔損耗表網站http://wenku.baidu.com/view/d6189ebdf121dd36a32d823b
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *