帳號:guest(18.119.113.116)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃俊傑
作者(外文):Huang, Jyun-Jie
論文名稱(中文):一種針對極化碼的改良式置信度傳播解碼演算法與其硬體架構
論文名稱(外文):A modified belief propagation algorithm and hardware architecture for polar codes
指導教授(中文):翁詠祿
指導教授(外文):Yeong-Luh Ueng
口試委員(中文):王忠炫
陳彥銘
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061607
出版年(民國):104
畢業學年度:104
語文別:中文
論文頁數:78
中文關鍵詞:極化碼置信度傳播演算法
外文關鍵詞:Polar codeBelief propagation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:390
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
消息理論是由Claude Shannon在1948年提出。並且提出了通道容量限制又稱薛農極限(Shannon Limit)。其內容指出任何錯誤更正碼的錯誤率都不能超過薛農極限。因此後續不斷有許多學者投入這方面的研究,希望可以找到一種錯誤更正碼可以達到薛農極限。在1962年Gallager提出了低密度奇偶查核碼(Low Density Parity Check)。在1990年Mackay研究提出低密度奇偶查核碼的錯誤率可以接近薛農極限。極化碼是 Erdal Arikan 在 2007 年提出,他透過數學的方式推導出極化碼在碼長(Code Length)趨近於無限大時其錯誤率可以達到薛農極限(shannon limit),因此極化碼的出現讓許多學者為其感到震驚與興奮。現今極化碼解碼演算法大致可分成逐次消除(successive-cancellation)演算法與置信度傳播(belief propagation)演算法。逐次消除(successive-cancellation)演算法的優點是其硬體複雜度較低,但是其缺點是一旦碼長(code length)變長,其吞吐量(throughput)會嚴重的受到限制。因此提出了置信度傳播(belief propagation)演算法。置信度傳播(belief propagation)演算法可以透過迭代與平行處理的概念能有效的解決逐次消除演算法中吞吐量對於碼長的限制,但其錯誤率相較於現今的改良後的逐次消除(successive-cancellation)演算法低,且複雜度較高。有鑑於此本論文提出透過改良式的置信度傳播演算法,此方法可以有效提升原置信度傳播演算法的錯誤更能力,又能保有其吞吐量,本論文提出之方法在信噪比(signal to noise ratio) SNR=4.5 dB 時其錯誤率可以下降約 20 倍,且吞吐量的減少約只有原來的 3.32%,硬體面積增加約為原來的 4.8% 。
Polar codes were proposed by Erdal Arikan in 2007. He showed that the error correction capability can achieve the Shannon limit when the code length achieves to infinity. Today the polar decoding algorithm can be roughly divided into two classes, i.e., the successive cancellation algorithm and the belief propagation algorithm. Owing to the sequential of the successive cancellation algorithm its hardware complexity is low. When the code length becomes longer, the throughput becomes lower. In order to mitigate this problem, the belief propagation algorithm was proposed. The belief propagation algorithm can mitigate this problem by using the concept of iteration and parallel processing; However its error correction capability is slightly worse than the successive cancellation algorithm. In the thesis, we proposed a modify belief propagation algorithm by using the inversion function. Simulation results show that the throughput of the proposed algorithm loses $3.32\%$ and the hardware area increases $4.8\%$, but the frame error rate is $20$ times better than the original belief propagation algorithm when the signal to noise ratio is $4.5$ dB.
1.簡介 1
1.1 動機 1
1.2 論文架構 5
2.極化碼回顧 6
2.1 背景 6
2.2 生成矩陣 7
2.3 編碼器 11
2.3.1 資訊位置集合與凍結位置集合 11
2.3.2 編碼演算法 13
2.3.3 編碼架構圖 14
2.4 置信度傳播演算法與硬體架構 15
2.4.1 置信度傳播解碼演算法 15
2.4.2 置信度傳播解碼架構圖 23
2.5 置信度傳播極化碼解碼器的提早終止法則 27
2.5.1 Adaptive minLLR 演算法 27
2.5.2 G matrix 演算法 27
2.5.3 比較 Adaptive minLLR 與 G matrix 演算法 28
3.利用翻轉函數的改良式置信度傳播極化碼演算法 32
3.1 極化碼奇偶查核矩陣 35
3.2 改良式置信度傳播演算法 38
3.3 使用循環冗餘校驗改良提早終止法則 41
3.4 模擬結果 42
4.使用翻轉函數的改良式置信度傳播解碼器之硬體架構 56
4.1 循環冗餘校驗偵錯器的硬體架構 56
4.2 極化碼翻轉函數的硬體架構 59
4.3 改良式置信度傳播解碼器的硬體架構 63
4.4 改良式置信度傳播解碼器之硬體性能分析 68
4.4.1 改良式置信度傳播解碼器之速度分析 68
4.4.2 改良式置信度傳播解碼器之面積分析 69
5.結論 71
[1]MacKay, David JC, and Radford M. Neal., “Near Shannon limit perfor- mance of low density parity check codes.”Electronics letters , vol. 33, no. 6, pp.457 -458 1997
[2]E. Arikan., “”Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels.”IEEE Trans. Inf. Theory , vol. 55, no. 7, pp.3051 -3073 2009
[3]Tal, Ido, and Alexander Vardy., “List decoding of polar codes.” IEEE International Symposium on Information Theory., 2011
[4]Park, Youn Sung, et al “A 4.68 Gb/s belief propagation polar decoder with bit-splitting register file.” IEEE International Symposium on VLSI Circuits Digest of Technical Papers 2014
[5]Lin, Jun, and Zhiyuan Yan. “Efficient list decoder architecture for polar codes.” IEEE International Symposium on Circuits and Systems (ISCAS) 2014
[6]Fayyaz, Ubaid U., and John R. Barry. “A low-complexity soft-output decoder for polar codes.” Global Communications Conference (GLOBE-COM) 2013
[7]Arikan, Erdal. “A performance comparison of polar codes and Reed- Muller codes.” IEEE Commun Lett vol. 12, no. 6, pp.447 -449 2008
[8]Yuan, Bo, and Keshab Parhi. “Early Stopping Criteria for Energy- Efficient Low-Latency Belief-Propagation Polar Code Decoders.” IEEE Transactions on Signal Processing vol. 12 2014
[9]Sundararajan, Gopalakrishnan, Chris Winstead, and Emmanuel Boutil- lon. “Noisy gradient descent bit-flip decoding for LDPC codes.” IEEE Transactions on Signal Communications vol. 62 2014
[10]NARESH, S., and K. SUDHA RANI. “A Novel Approach for Parallel CRC generation for high speed application.” International Conference on Communication Systems and Network Technologies (CSNT) 2012
[11]Leroux, Camille, et al. “A semi-parallel successive-cancellation decoder for polar codes.” IEEE Transactions on Signal Processing Volume:61 2012
[12] Eslami, A.; Pishro-Nik, H. “On Finite-Length Performance of Polar Codes: Stopping Sets, Error Floor, and Concatenated ” IEEE transaction on communication VOL. 61, NO. 3, MARCH 2013
[13] Colin P. Williams, Quantum Computing and Quantum Communications. Springer, 1998, pp. 15.
[14] Karim M. Abadir and Jan R. Magnus, Matrix Algebra Communications. CAMBRIDGE, 2005, pp. 277.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *