帳號:guest(18.191.233.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王彥堯
作者(外文):Wang, Yen Yao
論文名稱(中文):應用於雙向分離控制技術低功率靜態隨機存取記憶體之雙階段電荷分享機制
論文名稱(外文):Two Step Charge Sharing Scheme for Low Power Static Random Access Memory with Dual-Split-Control Assist Technique
指導教授(中文):張孟凡
指導教授(外文):Chang, Meng fan
口試委員(中文):洪浩喬
邱瀝毅
口試委員(外文):Hong, Hao Chiao
Chiou, Lih Yih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061606
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:61
中文關鍵詞:靜態隨機存取記憶體雙向分離控制雙階段電荷分享
外文關鍵詞:Static Random Access MemoryDual-Split ControlTwo Step Charge Sharing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:498
  • 評分評分:*****
  • 下載下載:18
  • 收藏收藏:0
由於靜態隨機存取記憶體具有快速存取的記憶功能,因此在電子產品中是一
個非常重要的電路。它的容量是影響整個系統速度的主要因素。為了達到大量存
取資料的需求,此記憶體在整個系統所佔的面積越來越大。因此,如何降低功率消耗是一個非常重要的議題。
為了降低靜態隨機存取記憶體的功率消耗,降低供給電壓是最直接且有效的方式,然而,靜態隨機存取記憶體操作在低電壓時將會面臨以下的問題:(1)於寫入操作時會導致寫入失敗(2)於讀取操作時會產生讀取擾動(3)於寫入操作時會產生半選擇擾動。先前的作品提出了一個創新的記憶胞搭配雙向分離控制技術,此作品架構是將字組線分成字組線L和字組線R,以及將接地端分成接地端L和接地端R。其操作特色為偽單邊寫入於兩相位中,單邊讀取於單相位中。此記憶胞藉由抬升接地端的電壓來改善讀取擾動和半選擇擾動的問題。然而,根據記憶胞矩陣的佈局以及資料格局的方式,分別會產生接地彈跳與抬升接地端電壓不穩定的問題。
針對接地彈跳的問題,我們採用前人提出的方式解決,稱之為陣列邊緣記憶體技術。針對另一個議題,此作品提出了雙階段電荷分享機制。根據不同的資料格局會使接地端所看到的負載有所不同,而為了達到低功耗的需求,採用電荷分享的方式,第一步驟先將電路的電壓重置,第二步驟會做第一次的電荷分享決定接地端的電壓,第三步驟則會去偵測此電壓的高低決定是否需要再做第二次的抬升,以達到較好的記憶胞性能。
透過六十五奈米互補式金氧半邏輯製程技術,建構出一容量為四千字元之創新記憶胞搭配雙向分離控制電路,藉由示波器的量測,此作品可達到的最低操作電壓為400毫伏特,此外,和沒有抬升接地端電壓的情況下做比較,最低操作電壓的改善為120毫伏特。
Static Random Access Memory (SRAM) is an important circuit in the electronic products owing to the function of high-speed memory. It’s capacity is the main reason for affecting the speed of systems. In order to meet the substantial requirements of stored data, it occupies more and more area in the systems. Hence, the power consumption of SRAM becomes an indispensable issue.
To reduce power consumption of SRAM, lowering the supply voltage is a direct and effective way. Nevertheless, SRAM operating at low VDD would suffer from the following issue : (1) write failure in write operation (2) read disturb in read operation (3) half-select disturb in write operation. Previous work proposes a novel 6T cell with dual-split control (DSC) technique. The word-line (WL) of cell is divided into WLL and WLR. Also, the ground (CVSS) of cell is divided into CVSSL and CVSSR. The feature of cell is pseudo single-ended write with two phases and single-ended read with one phase. It can improve read disturb and half-select disturb by raising CVSS. However, according to the layout and data pattern of cell array, it suffers from ground bounce and the difficulty for raising CVSS.
For ground bounce, we adopt the method proposed by pervious work which is called array-edge memory (AEM) technique. For the other issue, we propose two step charge sharing scheme. In accordance with the data pattern of cell array, loading of CVSS would be different. For the requirement of low power, we employ charge sharing approach. The first step is reset state. At the second step we do the first charge sharing to generate the voltage of CVSS. At the third step, we detect this voltage to decide whether it should be raised again to achieve better performance of cell.
Based on 65nm CMOS logic process, we fabricate a 4Kb SRAM composed of 6T cell with DSC scheme. This work achieves VDDmin equal to 400mV through oscilloscope testing. In addition, VDDmin improvement is 120mV compared with no raising for CVSS.

摘要 i
Abstract iii
Contents v
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 SRAM Background 1
1.2 About MOSFET Current Model at Low Voltage 5
1.3 Overview of the Thesis 6
Chapter 2 Introduction of SRAM from Architecture 8
2.1 Basic Concept of Conventional 6T SRAM 8
2.2 Write Operation 10
2.3 Read Operation 11
2.4 Standby Operation 12
2.5 Structure of Conventional 6T SRAM 13
Chapter 3 Issue of Low Voltage 6T SRAM Cell 16
3.1 Introduction of 6T SRAM Cell 16
3.1.1 Write Operation 18
3.1.2 Read Operation 19
3.2 Process Variation 19
3.3 Write Failure in Write Operation 20
3.4 Read Disturb in Read Operation 21
3.5 Half-Select (HS) Disturb in Write Operation 22
3.6 Analyses of Conventional 6T Cell Design 23
3.6.1 Write Margin (WM) 23
3.6.2 Static Noise Margin (SNM) For Read (RSNM) and Hold (HSNM) 24
Chapter 4 Design Challenge of Dual-Split Control (DSC) 6T SRAM at low Voltage 26
4.1 Background 26
4.2 Operation 30
4.2.1 Write Operation 30
4.2.2 Read Operation 32
4.3 Issue of Ground Bounce 33
4.4 Issue of Cell VSS (CVSS) Raising 34
4.5 Impact of CVSS Raising Voltage Level 35
4.5.1 WM Analysis 36
4.5.2 RSNM Analysis 37
4.5.3 HSNM Analysis 38
4.5.4 Summary for SNM 39
Chapter 5 Proposed Two Step Charge Sharing Scheme 41
5.1 Concept 41
5.2 Operation Step 42
5.3 Error Code Detector Introduction 45
5.4 Analysis 47
5.4.1 CVSS Raising Voltage Level 47
5.4.2 Cell VDDmin 48
Chapter 6 DSC 6T SRAM Macro Implementation 50
6.1 Floor Plan of SRAM Macro 50
6.2 Design for Test Chip 52
6.3 Die Photo of SRAM Macro 53
Chapter 7 Experimental Result and Conclusion 54
7.1 Chip Performance Measurement 54
7.2 Summary and Conclusion of Thesis 56
Reference 59
[1] J. Rabaey, Low Power Design Essentials. Boston, MA: Springer-Verlag US, 2009.
[2] K. Zhang, et al., "Low-Power SRAMs in Nanoscale CMOS Technologies,"IEEE Trans. Electron Devices, vol. 55, pp. 145-151, Jan. 2008.
[3] Y.-C. Lai, et al., "Resilient Self-VDD-Tuning Scheme With Speed-Margining for Low-Power SRAM," IEEE J. Solid-State Circuits, vol. 44, pp. 2817-2823, Oct. 2009.
[4] R. K. Krishnamurthy, "Ultra-low Voltage Microprocessors Design: Challenges and Solutions," ISSCC 2009 Forum4 : Ultra-low Voltage Circuit Design, 2009.
[5] T. Sakurai, "Variability and Ultra-low Voltage Logic Design," ISSCC 2009 Forum4 : Ultra-low Voltage Circuit Design, 2009.
[6] Y. Wang, et al., "A 4.0 GHz 291 Mb Voltage-Scalable SRAM Design in a 32 nm High-k + Metal-Gate CMOS Technology With Integrated Power Management," IEEE J. Solid-State Circuits, vol. 45, pp. 103-110, Jan. 2010.
[7] M.-F. Chang, et al., "A differential data aware power-supplied (D2AP) 8T SRAM cell with expanded write/read stabilities for lower VDDmin applications," in VLSI Circuits, 2009 Symposium on, pp. 156-157, 2009.
[8] B. Calhoun, "Low Energy Digital Circuit Design Using Sub-threshold Operation," Ph. D, Electrical and Computer Engineering, Massachusetts Institute of Technology, Cambridge, MA, U.S., 2005.
[9] M. Qazi, et al., "A 512kb 8T SRAM Macro Operating Down to 0.57V with An AC-Coupled Sense Amplifier and Embedded Data-Retention-Voltage Sensor in 45nm SOI CMOS," ISSCC Dig. Tech. Papers, pp. 350-351, Feb. 2010.
[10] M. E. Sinangil, et al., "A Reconfigurable 8T Ultra-Dynamic Voltage Scalable (U-DVS) SRAM in 65nm CMOS," IEEE J. Solid-State Circuits, vol. 44, pp. 3163-3173, Nov. 2009.
[11] N. Weste and D. Harris., CMOS VLSI Design : A Circuits and Systems Perspective 3rd ed. Boston: Pearson/Addison-Wesley, 2005.
[12] A. Bhavnagarwala, "Voltage Scaling Constraints for Static CMOS Logic and Memory Circuits " Ph. D, Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, U.S., 2001.
[13] K. Roy, et al., "Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits," Proceedings of the IEEE, vol. 91, pp. 305-327, Feb. 2003.
[14] W. Shyh-Chyi, et al., "A CMOS mismatch model and scaling effects," IEEE Electron Device Letters, vol. 18, pp. 261-263, June 1997.
[15] Z. Guo, et al., "Large-Scale SRAM Variability Characterization in 45 nm CMOS," IEEE J. Solid-State Circuits, vol. 44, pp. 3174-3192, Nov. 2009.
[16] L.-T. Pang and B. Nikolic, "Measurements and analysis of process variability in 90 nm CMOS," IEEE J. Solid-State Circuits, vol. 44, pp. 1655-1663, May 2009.
[17] E. Seevinck, et al., "Static-noise margin analysis of MOS SRAM cells," IEEE J. Solid-State Circuits, vol. 22, pp. 748-754, Oct. 1987.
[18] A. Agarwal, et al., "A 320mV-to-1.2V On-Die Fine-Grained Reconfigurable Fabric for DSP/Media Accelerators in 32nm CMOS," ISSCC Dig. Tech. Papers, pp. 328-329, Feb. 2010.
[19] M. Wieckowski and M. Margala, "A portless SRAM Cell using stunted wordline drivers," in Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on, pp. 584-587, 2008.
[20] M. Wieckowski, et al., "Portless SRAM-A High-Performance Alternative to the 6T Methodology," IEEE J. Solid-State Circuits, vol. 42, pp. 2600-2610, Nov. 2007.
[21] K. Nii, et al., "A 45-nm single-port and dual-port SRAM family with robust read/write stabilizing circuitry under DVFS environment," in VLSI Circuits, 2008 IEEE Symposium on, pp. 212-213, 2008.
[22] D. P. Wang, et al., "A 45nm dual-port SRAM with write and read capability enhancement at low voltage," in SOC Conference, 2007 IEEE International, pp. 211-214, 2007.
[23] S. A. Tawfik and V. Kursun, "Low power and robust 7T dual-Vt SRAM circuit," in Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on, pp. 1452-1455, 2008.
[24] J. Singh, et al., "Single ended 6T SRAM with isolated read-port for low-power embedded systems," in Design, Automation & Test in Europe Conference & Exhibition, 2009. DATE '09., pp. 917-922, 2009.
[25] M.-F. Chang, et al., "A 28nm 256kb 6T-SRAM with 280mV Improvement in VMIN Using a Dual-Split-Control Assist Scheme," IEEE ISSCC Dig. Tech. Papers., 2015.
[26] Yuki Fujimura, et al., "A Configurable SRAM with Constant-Negative-Level Write Buffer for Low-Voltage Operation with 0.149µm2 Cell in 32nm High-κ Metal-Gate CMOS," IEEE ISSCC Dig. Tech. Papers, pp. 348-349, 2010.
[27] H. Pilo, et al., "A 64Mb SRAM in 32nm High-k Metal-Gate SOI Technology with 0.7V Operation Enabled by Stability, Write-Ability and Read-Ability Enhancements," IEEE ISSCC Dig. Tech. Papers, pp. 254-256, 2011.
[28] T. Song, et al., " A 14nm FinFET 128Mb 6T SRAM with VMIN-Enhancement Techniques for Low-Power Applications," IEEE ISSCC Dig. Tech. Papers, pp. 232-233, 2014.
[29] Y.H Chen, et al., "A 16nm 128Mb SRAM in High-κ Metal-Gate FinFET Technology with Write-Assist Circuitry for Low-VMIN Applications," IEEE ISSCC Dig. Tech. Papers, pp. 238-239, 2014.
[30] J. Kulkarni., et al., " Capacitive-Coupling Wordline Boosting with Self Induced VCC Collapse for Write VMIN Reduction in 22-nm 8T SRAM," IEEE ISSCC Dig. Tech. Papers, pp. 234-236, Feb. 2012.
[31] P. Kolar., et al., " A 32 nm High-k Metal Gate SRAM With Adaptive Dynamic Stability Enhancement for Low-Voltage Operation," IEEE J. Solid-State Circuits, vol. 46, pp. 76-84, Jan 2011.
[32] J. Chang., et al., " A 20nm 112Mb SRAM in High-к metal- gate with assist circuitry for low- leakage and low-VMIN applications," IEEE ISSCC Dig. Tech. Papers, pp. 316-317, Feb. 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *