帳號:guest(3.144.228.11)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐功柝
作者(外文):Hsu, Kung Tuo
論文名稱(中文):雷達系統用於預測及分類運動肺功能指數
論文名稱(外文):Classification and Prediction of Respiration Indexes based on Radar System
指導教授(中文):黃元豪
指導教授(外文):Huang, Yuan Hao
口試委員(中文):邱瀞德
黃柏鈞
朱大舜
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061592
出版年(民國):104
畢業學年度:104
語文別:英文中文
論文頁數:61
中文關鍵詞:雷達晶片呼吸還原演算法支持向量機機器學習模糊理論居家照護系統
外文關鍵詞:Radar chipRespiration reconstruction algorithmsupport vector machinemachine learningfuzzy theoryhome care system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:265
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
近年來因為空氣污染以及人們生活型態的轉變,導致罹患呼吸道疾病的病患攀升。 現今大多數的呼吸道檢測儀器都置放在醫院,並且需要由專業的醫護人員協助使用。因此我們提出了雷達系統,提供病人更為簡單並且非接觸式的檢測儀器。
在此研究中,更加入了自動偵測演算法,能夠讓使用者節省設定的時間,並且更為貼近居家照護系統。在雷達系統中,我們先利用雷達記錄呼吸過程,再透過FSLW處理,萃取出人體呼吸特徵值,最後透過人體呼吸特徵值進行實驗。
為了驗證我們的系統是具有可信度的,我們將提出的人體特徵值與現今用來檢測呼吸道疾病的儀器"肺功能機"做相關性的實驗。我們透過support vector machine以及adaptive neuro-fuzzy inference system學習演算法進行分類以及預測由肺功能機量測出的呼吸參數,進而得出與肺功能機的相關系數。
在實驗中,我們也與步態系統合作,利用兩方得到的參數進行實驗。就結果而言,合作之後的結果是對分類以及預測是有幫助的。
In recent years, the air pollution and the change of lifestyle enhance the probability of suffering lung disease. Because most of measuring instruments are expensive and placed in hospitals, which are operated with the assistance of the professional.
Measuring respiration information by radar system were able to provide the convenience for subject and save the travel time to hospital. In this study, we added the automatic position into the FPGA. It can accelerate the measurement time for the subject. First, we record the subject's process of respiration, then extracted respiratory feature by FSLW model. We can use the feature to estimate and judge the condition of the respiratory system.
Until now, pulmonary spirometer is one of the main instruments to measure respiratory indexes. We set the indexes as standard value, which are extracted by pulmonary spirometer, and set FSLW's indexes as the input conditions to classify respiratory ability and predict respiratory indexes. Where we use the support vector machine (SVM) to learn and classify respiratory ability, and use the adaptive neuro-fuzzy inference system (ANFIS) to learn and predict respiratory indexes. Through the results of the experiment, it indicated that the proposed the respiratory index extracted by radar system is reliable.
We combine the gait system to increase input conditions of SVM and ANFIS. According to the results, the cooperation with gait system has improved the classification accuracy and correlation with pulmonary spirometer.
Contents
1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Radar System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Goal and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Integrated Respiration detection System 7
2.1 Introduction of the Integrated Respiration detection System . . . . . . . 7
2.2 Introduction of COPD and Pulmonary Spirometer . . . . . . . . . . . . . 8
2.3 Gait System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Introduction of the Integrated Radar System . . . . . . . . . . . . . . . . 15
2.4.1 Radar Front-end-Chip . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Respiratory Signal Feature Extraction Algorithm . . . . . . . . . . . . . 26
3 Proposed Automatically Detection Algorithm 29
4 Clinical Experiment 35
4.1 Experiment set and flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Classification with Support Vector Machine . . . . . . . . . . . . . . . . 40
4.4 Predication with Adaptive Neural Fuzzy Inference Systems . . . . . . . . 44
4.5 Result of Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5 Conclusion and Future Work 57
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
[1] P. Y.-H. H. and Y.-F Chiu, “A low-complexity uwb-radar signal processing system for real-time human respiratory feature extraction,” in master thesis, National Tsing Hua University, taiwan, Spe 2013, pp. 12–31.
[2] V. N. Vapnik, “The nature of statistical learning theory,” New York: Springer, 1995.
[3] Jang, J.-S.R., “ANFIS: adaptive-network-based fuzzy inference system,” in Systems, Man and Cybernetics, IEEE Transactions on, vol. 23, no. 3, May 1993, pp. 665–685.
[4] C. Caro and J. Bloice, “Contactless apnea detector based on radar,” in Lancet, vol. 2(7731), Oct 1971, pp. 959–961.
[5] E. Staderini, “Uwb radars in medicine,” in Aerospace and Electronic Systems Magazine, IEEE, vol. 17, no. 1, Jan 2002, pp. 13–18.
[6] E. S. A. S. G. Ossberger, T. Buchegger and R. Weigel, “Non-invasive respiratory movement detection and monitoring of hidden humans using ultra wideband pulse radar,” in IEEE International Workshop on ULTRA Wideband Systems, Joint with Conference on Ultra wideband Systems and Technologies, May 2004. 60 BIBLIOGRAPHY
[7] N. R. S. Venkatesh, C. Anderson and R. Buehrer, “Implementation and analysis of respiration-rate estimation using impulse-based uwb,” in IEEE Military Communication Conference, Oct 2005.
[8] I. Immoreev and T. Tao, “Uwb radar for patient monitoring,” Master’s thesis, Nov 2008.
[9] M.-F. Wu, C.-L. Chen, C.-Y. Wen, and J.-Y. Hsu, “Design of pervasive rehabilitation monitoring for chronic obstructive pulmonary disease,” Master’s thesis, Nov 2013.
[10] G.-F Hong, “An Integrated UWB Radar Signal Processing System for Real-Time Human Respiratory Feature Extraction,” in master thesis, National Tsing Hua University, Taiwan, sep 2014.
[11] Matsuba K, Wright JL, Wiggs BR, Pare PD, Hogg JC, “The Changes in Airways Structure Associated with Reduced Forced Expiratory Volume in One Second,” in Eur Respir J, vol. 2, Oct 1989, pp. 834–839.
[12] ODonnell DE, Revill SM, Webb KA, “Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease,” in American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 5, 2010, pp. 770–777.
[13] Celli BR, MacNee W, “Standards for the diagnosis and treatment of patients with COPD,” in Eur Respir J, vol. 23, Jun 2004, pp. 932–946.
[14] Ferrer M, Alonso J, Morera J, et al, “Chronic obstructive pulmonary disease and health related quality of life,” in Ann Int Med, vol. 127, 1997, pp. 1072–1079.
[15] Schols AM, Slangen J, Volovics L, Wouters EF, “Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease,” in Am J Respir Crit Care Med, vol. 157, Jun 1998, pp. 1791–1797.
BIBLIOGRAPHY 61
[16] Y.-S Chan, “Classifying and Predicting Respiratory Function based on Gait Analysis,” in master thesis, National Tsing Hua University, Taiwan, 2015.
[17] S.-T Tseng, Y.-H Kao, C.-C Peng, J.-Y Liu and S.-C Chu, “A 65nm CMOS Low Power Impulse Radar System for Human Respiratory Feature Extraction and Diagnosis on Respiratory Diseases,” in RFIC, 2015.
[18] C.-M. Lai, K.-W. Tan, Y.-J. Chen, and T.-S. Chu, “A uwb impulse-radio timedarray radar with time-shifted direct-sampling architecture in 0.18- μm cmos,” vol. 61, no. 7, July 2014, pp. 2074–2087.
[19] C.-H Hsieh. Y.-H Shen. Y.-F Chiu. T.-S Chu and Y.-H Huang, “Human respiratory feature extraction on an UWB radar signal processing platform,” in Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, May 2013, pp. 1079–1082.
[20] Al-Hmouz, A. and Jun Shen and Al-Hmouz, R. and Jun Yan, “Modeling and Simulation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning,” in Learning Technologies, IEEE Transactions on, vol. 5, no. 3, July 2012, pp. 226–237.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *