帳號:guest(3.145.18.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃重穎
作者(外文):Huang, Chung-Ying
論文名稱(中文):W頻段與V頻段變壓器技術之低雜訊放大器設計
論文名稱(外文):Design of W-band and V-band Low Noise Amplifiers with Transformer Techniques
指導教授(中文):劉怡君
指導教授(外文):Liu, Yi-Chun
口試委員(中文):徐碩鴻
朱大舜
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061589
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:71
中文關鍵詞:低雜訊放大器
外文關鍵詞:LNAW-BandV-Band
相關次數:
  • 推薦推薦:0
  • 點閱點閱:366
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,由於CMOS製程的發展和演進,微波積體電路在V頻段(40-75 GHz)與W頻段(75-110 GHz)的應用有顯著的成長。例如:應用於霧視系統之成像接收器陣列、影像傳輸系統之高資料傳輸速率接收機等。在無線通訊系統中,低雜訊放大器(LNA)為接收機之第一級電路,須要能放大訊號到足夠大小並且不增加額外雜訊。良好的低雜訊放大器設計目標,須要有以下的特性,如:足夠的增益(Gain)、低雜訊係數(Noise Figure)、良好的線性度、良好的輸入阻抗匹配與維持電路的穩定度。然而,在W頻段下,CMOS主被動元件之寄生電容、低崩潰電壓和低品質因數,使得電路設計有所困難。
此論文中,完成了三個實作在90-nm CMOS製程之低雜訊放大器,兩個應用於W頻段,最後一個應用於V頻段。第一個設計主要採用了輸入端的變壓器作為回授路徑,同時達到寬頻的輸入阻抗匹配與低雜訊係數。此設計達到6.5 GHz 的頻寬、在64GHz時增益可達16.1 dB、最低雜訊係數為10 dB、線性度IP1-dB度可達-18 dBm。第二個設計是第一個設計的改良版本。由於電路走線的方式不同,電磁模擬的環境設定與精準度同時會受到影響,為了改進第一個設計,而採用了極間變壓器設計,以取代原本極間所使用電容,並且同時優化了級間之阻抗匹配。此設計達到20 GHz 的頻寬、在76GHz時增益可達7.6 dB、最低雜訊係數為7.5 dB、線性度IP1-dB度可達-12 dBm。最後一個設計則採用了轉導提升(Gm-boosting)技術,在CMOS之閘級與源級間使用變壓器作為回授路徑,且第一、二級級間同時使用變壓器來做為阻抗匹配。此設計之模擬結果可達到10 GHz 的頻寬、在59GHz時增益可達9.6 dB、最低雜訊係數為5 dB、線性度IP1-dB度可達-12 dBm。
Due to the scaling of silicon technology, millimeter-wave (mm-wave) integrated circuits especially in W-band (75-110 GHz) and V-band (40-75 GHz) are widely explored in recent years. For example, a CMOS imaging receiver array for fog vision camera and security, and a CMOS transceiver for high-speed video streaming. In wireless communication systems, low noise amplifier (LNA) is the first block in the receiver to amplify the received weak signal with minimum noise added. A good LNA design requires a high gain, low noise figure, high linearity, good input-output matching, and stability. However, the designs of W-band front-end circuits in CMOS technology are challenging due to the transistor parasitic capacitance, the low breakdown voltage, and the quality of the on-chip passive devices.
This thesis presents two LNAs in W-band and one LNA in V-band in 90-nm CMOS. The first design is a W-band LNA with a shunt-series transformer feedback at the input to achieve a wideband input matching and low noise performance simultaneously. The first design achieves a 3-dB bandwidth of 6.5 GHz, a peak gain of 16.1 dB at 64 GHz, a minimum noise figure of 10 dB, and an input P1-dB of -18 dBm. The second work is an improved design of the first one. Physical layout is revised to improve the accuracy of the electromagnetic modeling. Inter-stage capacitors are substituted for inter-stage transformers for matching optimization. The second design achieves a wide 3-dB bandwidth of 20 GHz, a peak gain of 7.6 dB at 76 GHz, a minimum noise figure about 7.5 dB at 76 GHz, and an input P1-dB of -12 dBm. Lastly, a V-band LNA is proposed. The Gm-boosting technique is adapted in the first stage with a source-to-gate transformer to improve the voltage gain. The T-coil peaking feedback transformer is designed at the output of the first stage to enhance the inter-stage bandwidth. The shunt-series transformer in the inter-stage serves as the matching network to provide a wideband loading. The V-band design in simulation achieves a 3-dB bandwidth of 10 GHz, a peak gain of 9.6 dB at 59 GHz, a minimum noise figure of 5 dB at 59 GHz, and an input P1-dB of -12 dBm. All of the proposed amplifiers are designed by the minimum noise measure technique to optimize their performances. Ground shielding under the passive devices are used to minimize the substrate loss.
ABSTRACT 2
CONTENTS 4
LIST OF FIGURES 6
LIST OF TABLE 9
CHAPTER 1 INTRODUCTION 10
1.1 Introduction to Millimeter-Wave Applications 10
1.2 Thesis Organization 10
CHAPTER 2 FUNDAMENTALS FOR LOW NOISE AMPLIFIER 12
2.1 Basics of Low Noise Amplifier Design 12
2.1.1 Gain 12
2.1.2 Noise 13
2.1.3 Linearity 14
2.1.4 Stability 17
2.1.5 Inter-Stage Stability 17
2.1.6 Noise Figure and Gain Optimization 18
CHAPTER 3 A W-BAND LOW NOISE AMPLIFIER IN 90-NM CMOS 19
3.1 Design Analysis 19
3.1.1 Basics of Common-Source Topology 19
3.1.2 Impedance Analysis for Inductive Degeneration 20
3.1.3 Noise Analysis for Inductive Degeneration 21
3.1.4 Impedance Analysis for Shunt-Series Transformer Feedback 23
3.1.5 Noise Analysis for Shunt-Series Transformer Feedback 25
3.2 Inductor Shunt Peaking 29
3.3 Bandwidth Enhancement 30
3.4 Passive Devices Design 31
3.5 Circuit Schematic 33
3.6 Simulation and Measurement Results 34
3.2.1 Simulation and Measurement Results 34
3.2.2 Discussion 38
3.7 Summary and Conclusion 39
CHAPTER 4 A W-BAND NOISE AMPLIFIER WITH INTER-STAGE TRANSFORMER MATCHING NETWORK 41
4.1 Input Transformer Network 41
4.2 Inter-Stage Impedance Optimization 43
4.3 Circuit Schematic 44
4.4 Simulation and Measurement Results 45
4.5 Summary and Conclusion 49
CHAPTER 5 A V-BAND LOW NOISE AMPLIFIER WITH GM-BOOSTING TRANSFORMER 51
5.1 Common-Gate Topology Analysis 51
5.1.2 Impedance Analysis for Common-Gate Stage 51
5.1.3 Noise Analysis for Common-Gate Stage 52
5.2 Gm-Boosting Technique 53
5.3 Circuit Schematic. 55
5.4 Simulation and Measurement Results 55
5.5 Summary and Conclusion 59
CHAPTER 6 CONCLUSION AND FUTURE WORK 61
[1] C. H. Doan et al., “Millimeter-Wave CMOS Design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan., 2005.
[2] W. H. Lin, Y. N. Jen, J. H. Tsai, H. C. Lu, T. W. Huang, "V-band fully-integrated CMOS LNA and DAT PA for 60 GHz WPAN applications," in Microwave Conference (EuMC), 2010 European , vol., no., pp.284-287, 28-30 Sept., 2010.
[3] K. Kang, Brinkhoff, J., Lin, F., "A 60 GHz LNA with 18.6 dB gain and 5.7 dB NF in 90nm CMOS," in Microwave and Millimeter Wave Technology (ICMMT), 2010 International Conference on , vol., no., pp.164-167, 8-11 May 2010.
[4] S. Pellerano, Y. Palaskas, and K. Soumyanath, “A 64GHz 6.5 dB NF 15.5 dB gain LNA in 90nm CMOS,” in Proc. European Solid-State Circuits Conf., 2007, pp. 352–355.
[5] Y.-S. Lin et al., “Low-power 77-81 GHz CMOS LNA with excellent matching for automotive radars,” Electron. Lett., vol. 50, no. 3, pp. 207–209, Jan. 2014.
[6] R. Berenguer et al., “A 43.5mW 77GHz receiver front-end in 65nm CMOS suitable for FM-CW automotive radar,” IEEE Custom Integrated Circuits Conference, Sep. 2010, pp. 1–4.
[7] C. Kim et al., “A CMOS centric 77GHz automotive radar architecture,” IEEE RFIC 2012. Dig., Jun. 2012, pp. 131–134.
[8] H. V. Le et al., “A 77 GHz CMOS low noise amplifier for automotive radar receiver,” in IEEE Int. RF Integr. Technol. Symp., 2012, pp. 174–176.
[9] Demirel, N., Severino, R.R., Ameziane, C., Taris, T., Begueret, J.B., Kerherve, E., Mariano, A., Pache, D., and Belot, D. ”Millimeter-wave chip set for 77–81 GHz automotive radar application,” IEEE New Circuits and Systems Conf. (NEWCAS), Bordeaux, France, June 2011, pp. 253–256.
[10] Chen, A.Y.K., Baeyens, Y., Chen, Y.K., and Lin, J.”A low-power linear SiGe BiCMOS low-noise amplifier for millimeter-wave active imaging,” IEEE Microw. Wirel. Compon. Lett., 2010, 20, (2), pp. 103–105.
[11] Le, H.V., Duong, H.T., Ta, C.M., Huynh, A.T., Evans, R.J., and Skafidas, E.”A 77 GHz CMOS low noise amplifier for automotive radar receiver,” IEEE Radio-Freq. Integr. Technol. (RFIT), Singapore, November 2012, pp. 174–176.
[12] Agarwal, P.; Sah, S.P.; Deukhyoun Heo, "A 4.8 mW, 4.4 dB NF, wideband LNA using positively coupled transformer for V-band applications," in Microwave Symposium (IMS), 2014 IEEE MTT-S International , vol., no., pp.1-3, 1-6 June 2014.
[13] T. Yao, M. Gordon, K. Tang, K. Yau, M. Yang, P. Schvan, and S. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60 GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May 2007.
[14] E. Cohen, S. Ravid, and D. Ritter, “An ultra-low power LNA with 15 dB gain and 4.4 dB NF in 90 nm CMOS foundry for 60 GHz phase array radio,” in Proc. IEEE RFIC Symp., 2008, pp. 61–64.
[15] Po-Yu Chang; Sy-Haur Su; Hsu, S.S.H.; Wei-Han Cho; Jun-De Jin, "An Ultra-Low-Power Transformer-Feedback 60 GHz Low-Noise Amplifier in 90 nm CMOS," in Microwave and Wireless Components Letters, IEEE , vol.22, no.4, pp.197-199, April 2012.
[16] Kundu, S.; Paramesh, J., "A Compact, Supply-Voltage Scalable 45–66 GHz Baseband-Combining CMOS Phased-Array Receiver," in Solid-State Circuits, IEEE Journal of , vol.50, no.2, pp.527-542, Feb. 2015.
[17] Shita Guo; Tianzuo Xi; Ping Gui; Jing Zhang; Wooyeol Choi; Kenneth, K.O.; Yanli Fan; Daquan Huang; Gu, R.; Morgan, M., "54 GHz CMOS LNAs with 3.6 dB NF and 28.2 dB gain using transformer feedback Gm-boosting technique," in Solid-State Circuits Conference (A-SSCC), 2014 IEEE Asian , vol., no., pp.185-188, 10-12 Nov. 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *