帳號:guest(3.14.129.106)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭宇芳
作者(外文):Cheng, Yu Fang
論文名稱(中文):TSV架構三維動態隨機存取記憶體之TSV製程異常偵測
論文名稱(外文):Abnormality Detection for TSV Process in TSV-based 3D DRAM Manufacturing Process
指導教授(中文):吳誠文
指導教授(外文):Wu, Cheng Wen
口試委員(中文):李昆忠
洪浩喬
黃俊朗
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061585
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:58
中文關鍵詞:矽穿孔缺陷三維動態隨機存取記憶體
外文關鍵詞:TSVDefects3D DRAM
相關次數:
  • 推薦推薦:0
  • 點閱點閱:480
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
近年來,由於製程上的限制導致IC越來越難隨著Moore’s law的曲線所成長。為了保持在Moore’s law的曲線上,Through-silicon via (TSV)架構的3D IC是一種廣為接受的作法。由於在3D IC中,垂直的連接距離相較於其他堆疊技術更加縮短,其性能也可因此提升。為了實現3D堆疊的架構,目前有三種方法: wafer-to-wafer (W2W), die-to-wafer (D2W), 以及die-to-die (D2D)。在本研究中,我們假設使用D2W的方式。此外,在半導體中記憶體是最重要的產品;而且,由於資料通訊以及智慧手持裝置的快速發展及增長,對於記憶體的需求也越來越大。近年來,為了達到更高的頻寬與容量,利用TSV作為垂直通訊方式的三維動態隨機存取記憶體 (3D DRAM)被認為是一種可行的方式。然而,為了實現3D DRAM所額外加入的製程中卻可能導入新的defects。每項額外的製程都可能導入相關的defects並降低整體良率。為了預防良率急遽下降,在TSV相關製程的前後可能需要針對3D DRAM進行測試。本研究專注於3D IC生產、測試與封裝流程中的TSV生產製程。我們利用空間與時間的分析去分析來自ATE的測試資料。我們將TSV陣列分成數個區域,並比較不同區域之間的良率,試圖找出misalignment偏移的趨勢。此外,我們將有缺陷的TSV與周圍同樣有缺陷的TSV合併為群組,並嘗試將TSV陣列中的TSV分成不同的群組。本研究在的綜合偵測準確率可達到92.392%,對於random failure的準確率可達到99.9843%,對於cluster failure的準確率可達到97.2268%,而對於misalignment的準確率可達到79.8066%
Recently, keeping Moore’s law is more difficult because of the limitations of the process. Through-silicon via (TSV) based three dimensional integrated circuit (3D IC) is a popular way to meet the law. Thanks to the shorter vertical interconnection paths in 3D IC, its performance can be better than other packages or stacking technologies. There are many methods to stack dies together, e.g., wafer-to-wafer (W2W), die-to-wafer (D2W), and die-to-die stacking (D2D). In this work, without loss of generality, we assume the D2W stacking process is adopted. Moreover, memory is the most important product in semiconductors, and thanks to the rapid growth of data communication and smart handheld devices, the requirement of semiconductor memory is also growing. Recently, three dimensional DRAM (such as Wide-IO, Wide-IO2, HBM, etc.) which utilizes TSVs as the vertical paths to communicate between dies is considered as a good approach to achieving higher bandwidth and larger capacity. However, new defects can be introduced during the extra steps in manufacturing the 3D DRAM. Each added step may introduce its own type of new defects, reducing the overall yield. To prevent dramatic yield loss, the 3D DRAM may need to be tested before and/or after TSV fabrication. This work focuses on the TSV fabrication process, which is part of the entire wafer fabrication, packaging and testing flow for 3D-IC products. We analyze the test data from automatic test equipment (ATE) by spatial and temporal analysis. We separate the TSV array into several regions, and try to find the trend of misalignment by comparing the yields of these regions. In addition, we group failed TSVs which are close to each other. This work can get 92.392% in total detection accuracy, and 99.9843% for random failure, 97.2268% for cluster failure, and 79.8066% for misalignment.

Abstract i
Contents ii
List of Figures iv
List of Tables viii
Chapter 1 Introduction 1
1.1 3D IC 1
1.2 3D DRAM 1
1.3 Abnormality Detection for TSV Process 2
1.4 Organization of the Thesis 3
Chapter 2 Background 4
2.1 3D IC Stacking Process 4
2.2 Specific Defects in TSV-Based 3D IC 6
2.3 Test Flow for 3D Stacked Chips 7
2.4 Abnormality in the Stacking Process 10
Chapter 3 Abnormality Detection for TSV Process 11
3.1 Overview 11
3.2 Data Parse and Rebuild 13
3.2.1 SPEC Files 13
3.2.2 Test Data 16
3.3 Misalignment Detection 16
3.4 Cluster Failure & Random Failure Detection 19
3.5 Temporal and Spatial Variance Analysis (TSVA) 22
3.5.1 Misalignment: 22
3.5.2 Cluster Failure: 23
3.5.3 Random Failure: 23
Chapter 4 Test Bench Generator 25
4.1 SPEC Files 26
4.2 Cluster and Random Failure 28
4.3 Misalignment 30
Chapter 5 Experimental Results 35
5.1 Single Failure 35
5.1.1 Misalignment 35
5.1.2 Cluster Failure 40
5.2 Multiple Failures 42
5.2.1 Misalignment and Cluster Failure 42
5.2.2 Cluster Failure and Random Failure 44
5.2.3 Misalignment, Cluster Failure, and Random Failure 48
5.3 Uncut Wafer Bin Map Rebuild and Analysis 52
5.3.1 Uncut Wafer Bin Map Rebuild 53
5.3.2 Temporal and Spatial Variance Analysis 54
Chapter 6 Conclusions and Future Work 56
Bibliography 57
[1] Y. W. Chang, and K. N. Chen, "Fabrication and reliability investigation of copper pillar and tapered through silicon via (TSV) for direct bonding in 3D integration," in Proc. IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Hsinchu, June 2015, pp.439-442.
[2] F. Furuta, T. Matsumura, K. Osada, M. Aoki, K. Hozawa, K. Takeda, and N. Miyamoto, "Scalable 3D-FPGA using wafer-to-wafer TSV interconnect of 15 Tbps/W, 3.3 Tbps/mm2," in Proc. Symposium on VLSI Technology (VLSI), Kyoto, June 2013, pp. C24-C25.
[3] Y. H. Hu, C. S. Liu, M. T. Chen, M. D. Cheng, H. J. Kuo, M. J. Lii., A. La Manna, K. J. Rebibis, T. Wang, S. V. Huylenbroeck, R. Daily, G. Capuz, D. Velenis, G. Beyer, E. Beyne, and D. C. H. Yu, "Process development to enable 3D IC multi-tier die bond for 20μM pitch and beyond," in Proc. IEEE Electronic Components and Technology Conference (ECTC), Orlando, FL, May 2014, pp. 572-575.
[4] T. Fukushima, E. Iwata, Y. Ohara, M. Murugesan, J. Bea, K. Lee, T. Tanaka, and M. Koyanagi, "Multichip Self-Assembly Technology for Advanced Die-to-Wafer 3-D Integration to Precisely Align Known Good Dies in Batch Processing," in Proc. IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.1, no.12, Dec. 2011, pp. 1873-1884.
[5] T. Nomura, R. Mori, M. Ito, K. Takayanagi, T. Ochiai, K. Fukuoka, K. Otsuga, K. Nii, S. Morita, T. Hashimoto, T. Kida, J. Yamada, and H. Tanaka, "Testability improvement for 12.8 GB/s Wide IO DRAM controller by small area pre-bonding TSV tests and a 1 GHz sampled fully digital noise monitor," in Proc. IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, Sept. 2013, pp. 1-4.
[6] B. Y. Lin, W. T. Chiang, C. W. Wu, M. Lee, H. C. Lin, C. N. Peng, and M. J. Wang, "Redundancy architectures for channel-based 3D DRAM yield improvement," in Proc. IEEE International Test Conference (ITC), Seattle, WA, Oct. 2014, pp. 1-7.
[7] H. H. Cheng, C. C. Lee, M. F. Chung, P. C. Pan, P. F. Yang, C. T. Chiu, C. P. Hung, and C. C. Wang, "Next generation package-on-package solution to support wide IO and high bandwidth interface," in Proc. IEEE Electronic Components and Technology Conference (ECTC), Orlando, FL, May 2014, pp. 2112-2118.
[8] JDEC STANDARD Wide I/O 2 (WideIO2), JESD229-2, 2014
[9] D. C. Hu, P. B. Lin, and Y. H. Chen, "A TSV-less PoP packaging structure for high bandwidth memory," in Proc. IEEE Electronic Components and Technology Conference (ECTC), San Diego, CA, May 2015, pp. 888-892.
[10] H. Lee, K. Cho, H. Kim, S. Choi, J. Lim, and J. Kim, "Electrical performance of high bandwidth memory (HBM) interposer channel in terabyte/s bandwidth graphics module," in Proc. International 3D Systems Integration Conference (3DIC), Sendai, Aug. 2015, pp. TS2.2.1-TS2.2.4.
[11] Y. W. Chou, P. Y. Chen, M. Lee, and C. W. Wu, "Cost modeling and analysis for interposer-based three-dimensional IC," in Proc. IEEE VLSI Test Symposium (VTS), Hyatt Maui, HI, April 2012, pp. 108-113.
[12] I. Loi, S. Mitra, T. H. Lee, Fujita, Shinobu, and L. Benini, "A low-overhead fault tolerance scheme for TSV-based 3D network on chip links," in Proc. IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, Nov. 2008, pp. 598-602.
[13] C. J. Zhan, J. Y. Juang, Y. M. Lin, Y. W. Huang, K. S. Kao, T. F. Yang, S. T. Lu, J. H. Lau, T. H. Chen, R. Lo, and M. J. Kao, "Development of fluxless chip-on-wafer bonding process for 3DIC chip stacking with 30μm pitch lead-free solder micro bumps and reliability characterization," in Proc. IEEE Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, May 2011, pp. 14-21.
[14] K. Chakrabarty, S. Deutsch, H. Thapliyal, and F. Ye, "TSV defects and TSV-induced circuit failures: The third dimension in test and design-for-test," in Proc. IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, April 2012, pp. 5F.1.1-5F.1.12.
[15] S. Q. Gong, W. Liu, J. B. Tan, Bhatkar, M., H. Cong, J. Oswald, E. Lo, and S. Y. Siah, "Foundry TSV integration and manufacturing challenges," in Proc. IEEE International Interconnect Technology Conference / Advanced Metallization Conference (IITC/AMC), San Jose, CA, May 2014, pp. 385-388.
[16] D. Lee, D. Kim, S. Han, J. Kim, J. Park, B. Jang, Y. Chung, S. Seo, Y. Kim, and C. Lee, "Optimization of CMP process for TSV reveal in consideration of critical defect," in Proc. IEEE Electronic Components and Technology Conference (ECTC), Orlando, FL, May 2014, pp. 1816-1821.
[17] F. Ye, and K. Chakrabarty., "TSV open defects in 3D integrated circuits: Characterization, test, and optimal spare allocation," in Proc. ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, June 2012, pp. 1024-1030.
[18] Y. Zhao, S. Khursheed, and B. M. Al-Hashimi, "Cost-Effective TSV Grouping for Yield Improvement of 3D-ICs," in Proc. Asian Test Symposium (ATS), New Delhi, Nov. 2011, pp. 201-206.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *