帳號:guest(18.227.134.45)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳冠華
作者(外文):Chen, Kuan Hua
論文名稱(中文):適用於廣義空間鍵移多輸入多輸出系統之列表正交匹配追蹤偵測器
論文名稱(外文):List Orthogonal Matching Pursuit Detector for Generalized Space Shift Keying MIMO Systems
指導教授(中文):黃元豪
指導教授(外文):Huang, Yuan Hao
口試委員(中文):賴以威
蔡佩芸
陳喬恩
口試委員(外文):Lai, I Wei
Tsai, Pei Yun
Chen, Chiao En
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061573
出版年(民國):104
畢業學年度:104
語文別:英文中文
論文頁數:61
中文關鍵詞:廣義空間鍵移多輸入多輸出系統正交匹配追蹤偵測器
外文關鍵詞:generalized space shift keyingmultiple input multiple outputMIMO systemorthogonal matching pursuitdetectorcoherence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:412
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
面對龐大的無線傳輸資料量,單輸入單輸出(Single Input Single Output)的天線系統已經無法滿足需求,因而發展多輸入多輸出(Multiple Input Multiple Output)的系統;然而在追求高頻譜效益(spectral efficiency)的同時,卻無法兼顧能源效益(energy efficiency)。近年來,許多研究嘗試改善這項缺點,尋求一個折衷的版本,因此衍生出了空間調變(spatial modulation)的技術。此篇論文中,我們在廣義空間鍵移多輸入多輸出(generalized space shift keying)系統下提出了偵測器的設計。有別於傳統多輸入多輸出的偵測器設計,我們是針對空間調變多輸入多輸出系統下設計偵測器,而正交匹配追蹤(orthogonal matching pursuit)這項技術,因為低複雜度的優勢而被廣泛使用在稀疏信號(sparse signal)的還原;然而在各通道之間相似較高的情況,或是mutual coherence較大時,往往會因為天線之間的相關性太高而使得偵測器混淆選到錯誤的天線,還原出錯誤的信號。也因此許多研究注重在額外設計等化器(equalizer)來降低通道之間的相似度,進一步提升傳統正交匹配追蹤的性能,卻往往付出了極大的複雜度成本。相反的,我們所提出的偵測器則是有辦法在一個比先前的研究中用更低的複雜度達到更佳的表現,並且能夠透過每個階段保留多的候選者(candidate)作為參數上的調整,針對不同的系統需求改變還原表現,甚至逼近最大概似估計(maximum likelihood)的結果。最後透過各演算法完整的複雜度比較以及錯誤率來顯現出我們提出偵測器的優勢。
To deal with the rapid growth of wireless data traffic, we propose the detector design in generalized space shift keying (GSSK)-MIMO systems. With the advantage of low complexity, orthogonal matching pursuit (OMP) is widely adopted. Nevertheless, failure may occur in the identification of antenna index under a large mutual coherence of the channel. Thus, lots of studies and research have been conducted to further improve the performance of standard OMP. Most of the previous works focus on minimizing mutual coherence and designing additional equalizer at the receiver, which leads to high complexity in the end. On the other hand, the algorithm we propose achieves better performance than those from the previous works with lower complexity. Meanwhile, the proposed algorithm is adjustable by simply increasing the amount of candidates in each iteration, depending on the requirements of the systems. Consequently, the proposed detector is capable of achieving the same performance as maximum likelihood. Simulation results and comprehensive survey of the complexity are given to demonstrate the superior performance among other methods.
1 Introduction 1
1.1 MIMO and SM-MIMO Systems . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 MIMO Systems 7
2.1 MIMO System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Spatial Modulation MIMO System Model . . . . . . . . . . . . . . . . . 9
2.3 GSM-MIMO System Model . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 GSSK-MIMO System Model . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Compressive Sensing-Based Orthogonal Matching Pursuit Detectors 15
3.1 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Mutual Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Compressive Sensing for SM-MIMO System . . . . . . . . . . . . 19
3.2 Conventional OMP Algorithms . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Standard OMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Optimized OMP I . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Optimized OMP II . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4 Proposed List OMP Detector 31
4.1 List OMP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5 Conclusion
[1] K.-C. Tsao, “A Low-Complexity Two-Stage Signal Reconstruction Algorithm for Compressive Sensing Ultra-Wideband Radar Positioning Systems,” Master’s thesis, National Tsing Hua University, Taiwan, October 2014.
[2] J. Mietzner, R. Schober, L. Lampe, W. Gerstacker, and P. Hoeher, “Multipleantenna techniques for wireless communications - a comprehensive literature survey,” Communications Surveys Tutorials, IEEE, vol. 11, no. 2, pp. 87–105, Second 2009.
[3] J. Tang, D. So, E. Alsusa, K. Hamdi, and A. Shojaeifard, “On the energy efficiency spectral efficiency trade-off in mimo-ofdma broadcast channels,” Vehicular Technology, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2015.
[4] V. Tarokh, H. Jafarkhani, and A. Calderbank, “Space-time block codes from orthogonal designs,” Information Theory, IEEE Transactions on, vol. 45, no. 5, pp.
1456–1467, Jul 1999.
[5] J. Xu, L. Qiu, and S. Zhang, “Energy efficient iterative waterfilling for the mimo broadcasting channels,” in Wireless Communications and Networking Conference (WCNC), 2012 IEEE, April 2012, pp. 198–203. 54 BIBLIOGRAPHY
[6] H. Kim, C.-B. Chae, G. de Veciana, and R. Heath, “A cross-layer approach to energy efficiency for adaptive mimo systems exploiting spare capacity,” Wireless Communications, IEEE Transactions on, vol. 8, no. 8, pp. 4264–4275, August 2009. [7] H. S. Kim and B. Daneshrad, “Energy-constrained link adaptation for mimo ofdm wireless communication systems,” Wireless Communications, IEEE Transactions on, vol. 9, no. 9, pp. 2820–2832, September 2010.
[8] R. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, “Spatial modulation,” Vehicular Technology, IEEE Transactions on, vol. 57, no. 4, pp. 2228–2241, July 2008.
[9] X. Wu, H. Claussen, M. Di Renzo, and H. Haas, “Channel estimation for spatial modulation,” Communications, IEEE Transactions on, vol. 62, no. 12, pp. 4362– 4372, Dec 2014.
[10] M. Di Renzo and H. Haas, “Space shift keying (ssk-) mimo over correlated rician fading channels: Performance analysis and a new method for transmit-diversity,” Communications, IEEE Transactions on, vol. 59, no. 1, pp. 116–129, January 2011. [11] S. Ikki and R. Mesleh, “A general framework for performance analysis of space shift keying (ssk) modulation in the presence of gaussian imperfect estimations,” Communications Letters, IEEE, vol. 16, no. 2, pp. 228–230, February 2012.
[12] M. Di Renzo and H. Haas, “On transmit diversity for spatial modulation mimo: Impact of spatial constellation diagram and shaping filters at the transmitter,” Vehicular Technology, IEEE Transactions on, vol. 62, no. 6, pp. 2507–2531, July 2013.
[13] M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spatial modulation for generalized mimo: Challenges, opportunities, and implementation,” Proceedings of the IEEE, vol. 102, no. 1, pp. 56–103, Jan 2014. BIBLIOGRAPHY 55
[14] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “Space shift keying modulation for mimo channels,” Wireless Communications, IEEE Transactions on, vol. 8, no. 7, pp. 3692–3703, July 2009.
[15] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Generalized space shift keying modulation for mimo channels,” in Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008. IEEE 19th International Symposium on, Sept 2008, pp. 1–5.
[16] E. Larsson, “Mimo detection methods: How they work [lecture notes],” Signal Processing Magazine, IEEE, vol. 26, no. 3, pp. 91–95, May 2009.
[17] R. Chang, W.-H. Chung, and S.-J. Lin, “Detection of space shift keying signaling in large mimo systems,” in Wireless Communications and Mobile Computing Conference (IWCMC), 2012 8th International, Aug 2012, pp. 1185–1190.
[18] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: optimal detection and performance analysis,” Communications Letters, IEEE, vol. 12, no. 8,
pp. 545–547, Aug 2008.
[19] J. Tropp and A. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” Information Theory, IEEE Transactions on, vol. 53, no. 12, pp. 4655–4666, Dec 2007.
[20] Y. Jin and B. Rao, “Performance limits of matching pursuit algorithms,” in Information Theory, 2008. ISIT 2008. IEEE International Symposium on, July 2008,
pp. 2444–2448.
[21] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” Information Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489–509, Feb 2006. 56 BIBLIOGRAPHY
[22] S. Chatterjee, K. Hari, P. Handel, and M. Skoglund, “Projection-based atom selection in orthogonal matching pursuit for compressive sensing,” in Communications (NCC), 2012 National Conference on, Feb 2012, pp. 1–5.
[23] K. Schnass and P. Vandergheynst, “Dictionary preconditioning for greedy algorithms,” Signal Processing, IEEE Transactions on, vol. 56, no. 5, pp. 1994–2002,
May 2008.
[24] L. Chang, Q. Jiang, G. Li, and A. Yu, “Dictionary learning and sensing matrix optimization for compressed sensing,” in Information, Communications and Signal Processing (ICICS) 2013 9th International Conference on, Dec 2013, pp. 1–4.
[25] M. Elad, “Optimized projections for compressed sensing,” Signal Processing, IEEE Transactions on, vol. 55, no. 12, pp. 5695–5702, Dec 2007.
[26] C.-H. Wu, W.-H. Chung, and H.-W. Liang, “Omp-based detector design for space shift keying in large mimo systems,” in Global Communications Conference (GLOBECOM), 2014 IEEE, Dec 2014, pp. 4072–4076.
[27] P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V-blast: an architecture for realizing very high data rates over the rich-scattering wireless channel,” in Signals, Systems, and Electronics, 1998. ISSSE 98. 1998 URSI International Symposium on, Sep 1998, pp. 295–300.
[28] S. Alamouti, “A simple transmit diversity technique for wireless communications,” Selected Areas in Communications, IEEE Journal on, vol. 16, no. 8, pp. 1451–1458, Oct 1998.
[29] M. Davenport and M. Wakin, “Analysis of orthogonal matching pursuit using the restricted isometry property,” Information Theory, IEEE Transactions on, vol. 56, no. 9, pp. 4395–4401, Sept 2010. BIBLIOGRAPHY 57
[30] T. Cai, L. Wang, and G. Xu, “Shifting inequality and recovery of sparse signals,” Signal Processing, IEEE Transactions on, vol. 58, no. 3, pp. 1300–1308, March 2010.
[31] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, “A stochastic MIMO radio channel model with experimental validation,” in IEEE J. Sel. Areas Commun., vol. 20, no. 6, Aug 2002, pp. 1211–1226.
[32] A. V. Zelst and J. Hammerschmidt, “A single coefficient spatial correlation model for multiple-input multiple-output (MIMO) radio channels,” in Proc. of URSI General Assembly, Aug. 2002, pp. 1–4.
[33] M. Di Renzo, H. Haas, and P. M. Grant, “Spatial modulation for multiple-antenna wireless systems: a survey,” Communications Magazine, IEEE, vol. 49, no. 12, pp. 182–191, December 2011.
[34] A. Stavridis, S. Sinanovic, M. Di Renzo, H. Haas, and P. Grant, “An energy saving base station employing spatial modulation,” in Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2012 IEEE 17th International Workshop on, Sept 2012, pp. 231–235.
[35] C.-M. Yu, S.-H. Hsieh, H.-W. Liang, C.-S. Lu, W.-H. Chung, S.-Y. Kuo, and S.-C. Pei, “Compressed sensing detector design for space shift keying in mimo systems,” Communications Letters, IEEE, vol. 16, no. 10, pp. 1556–1559, October 2012.
[36] J.-H. Park, Y. Whang, and K. S. Kim, “Low complexity mmse-sic equalizer employing time-domain recursion for ofdm systems,” Signal Processing Letters, IEEE, vol. 15, pp. 633–636, 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *