|
[1] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash memory,” in Proceedings of the IEEE, vol. 91, pp. 489-502, 2003. [2] F. Masuoka, M. Momodomi, Y. Iwata and R. Shirota, “New ultra high density EPROM and flash EEPROM with NAND structure cell,” International Electron Devices Meeting Technical Digest, pp. 552-555, Dec. 1987. [3] T. Tanaka et al., “A 4-Mbit NAND-EEPROM with tight programmed Vt distribution,” Symposia on VLSI Circuits Digest of Technical Papers, pp. 105-106, Jun. 1990. [4] M. Bauer, et al., “A multilevel-cell 32 Mb flash memory,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 132-133, Feb. 1995. [5] K. D. Suh et. al., “A 3.3V 32Mb NAND Flash memory with Incremental Step Pulse Programming Scheme,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 128–129, Feb. 1995. [6] J. K. Kim, K. Sakui el al., “A 120 mm2 64 Mb NAND flash memory achieving 180 ns/byte effective program speed,” Symposium on VLSI Circuits Digest of Technical Papers, pp.168-169, Jun. 1996. [7] K.-T. Park et al., “A 3.3 V 128 Mb multi-level NAND Flash memory for mass storage applications,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 32–33, Feb. 1996. [8] K. Imamiya et al., “A 130 mm 256 Mb NAND flash with hallow trench isolation technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 112–113, Feb. 1999. [9] H. Nobukata et al., “A 144 Mb 8-level NAND flash memory with optimized pulse width programming,” Symposium on VLSI Circuits Digest of Technical Papers, pp. 39–40 Jun. 1999. [10] T. Cho et al., “A 3.3-V 1-Gb multilevel NAND flash memory with non-uniform threshold voltage distribution,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 28–29, Feb. 2001. [11] J. Lee et al., “A 1.8V 1-Gb NAND flash memory with 0.12um STI process technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 104–105, Feb. 2002. [12] H. Nakamura et al. "A 125mm2 1Gb NAND Flash Memory with 10MB/s Program Throughput Solid-State Circuits Conference,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 82–83, 411, Feb. 2002. [13] J. Lee, et al, “A 1.8V, 2Gb NAND Flash Memory for Mass Storage Applications,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 290-291, Feb. 2003. [14] S. Lee et al., “A 3.3 V 4 Gb four-level NAND flash memory with 90nm CMOS technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 52–53, Feb. 2004. [15] T. Hara, K. Fukuda, K. Kanazawa et al., “A 146mm2 8Gb NAND Flash Memory with 70nm CMOS Technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 44-45, Feb. 2005. [16] R. Micheloni, et al., “A 4Gb 2b/cell NAND Flash Memory with Embedded 5b BCH ECC for 36MB/s System Read Throughput,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 142-143, Feb. 2006. [17] K. Takeuchi, et al., “A 56nm CMOS 99mm2 8Gb Multi-level NAND Flash Memory with 10MB/s Program Throughput,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 507-516, Feb. 2006 [18] N. Shibata, H. Maejima, K. Isobe et al., “A 70nm 16Gb 16-Level-Cell NAND Flash Memory,” Symposium on VLSI Circuits Digest of Technical Papers, pp.190-191, Jun. 2007. [19] K. Kanda et al., “A 120mm2 16Gb 4-MLC NAND Flash Memory with 43nm CMOS Technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 430–625, Feb. 2008. [20] Yan Li, et al., “A 16Gb 3b/ Cell NAND Flash Memory in 56nm with 8MB/s Write Rate,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 506–632, Feb. 2008. [21] A. Cernea et al., “A 34 MB/s-Program-Throughput 16Gb MLC NAND with All -Bitline Architecture in 56 nm,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 420-421, 624, Feb. 2008. [22] R. Zeng et al., “A 172mm2 32Gb MLC NAND Flash Memory in 34nm CMOS,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 235-236, Feb. 2009. [23] T. Futatsuyama et al., "”A 113mm2 32Gb 3b/cell NAND Flash Memory,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 242-243, Feb. 2009. [24] S. Chang et al., “A 48nm 32Gb 8-Level NAND Flash Memory with 5.5MB/s Program Throughput,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 240-241, 241a, Feb. 2009. [25] C. Trinh et al., "A 5.6MB/s 64Gb 4b/Cell NAND Flash Memory in 43nm CMOS,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 246-247, 247a, Feb. 2009. [26] C. Lee et al., “A 32Gb MLC NAND Flash Memory with Vth Endurance Enhancing Schemes in 32nm CMOS,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 446-447 Feb. 2010. [27] K. Fukuda et al., “A 151mm 2 64Gb MLC NAND Flash Memory in 24nm CMOS Technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 198-199, Feb. 2011. [28] S. Lee et al., “A 32Gb MLC NAND Flash Memory with Vth Margin-Expanding Schemes in 26nm CMOS,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 198-199, Feb. 2011 [29] D. Lee et al., “A 64Gb 533Mb/s DDR Interface MLC NAND Flash in sub-20nm technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 430-432, Feb. 2012. [30] N. Shibata et al., “A 19nm 112.8mm2 64Gb Multi-Level Flash Memory with 400Mb/s/pin 1.8V Toggle Mode Interface,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 422-424, Feb. 2012. [31] Y. Li et al., “128Gb 3b/cell NAND Flash Memory in 19nm Technology with 18MB/s Write Rate and 400Mb/s Toggle Mode,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 436-437 Feb. 2012. [32] G. Naso et al., “A 128Gb 3b/cell NAND Flash Design Using 20nm Planar-Cell Technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 218-219, Feb. 2013. [33] S. Choi et al., “A 93.4mm2 64Gb MLC NAND-Flash Memory with 16nm CMOS Technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 328-329, Feb. 2014. [34] M. Helm et al., “A 128Gb MLC NAND-Flash Device Using 16nm Planar Cell,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 326-327, Feb. 2014. [35] M. Sako et al., “A Low-Power 64Gb MLC NAND-Flash Memory in 15nm CMOS Technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp.1-3, Feb. 2015. [36] H. Tanaka et al., “Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory,” Symposium on VLSI Technology Digest of Technical Papers, pp. 14-15, Jun. 2007. [37] M. H. White, D. A. Adams and J. Bu, “On the go with SONOS,” IEEE Circuits and Devices Magazine, vol. 16, no. 4, pp.22-31, 2000. [38] R. Katsumata et al., “Pipe-shaped BiCS Flash Memory with 16 Stacked Layers and Multi-Level-Cell Operation for Ultra High Density storage devices,” Symposium on VLSI Technology Digest of Technical Papers, pp. 136-137, June 2009. [39] J. Kim et al., “Vertical-Stacked-Array-Transistor (VSAT) for Ultra- high-density and Cost-effective NAND Flash Memory Devices and SSD (Solid State Drive),” Symposium on VLSI Technology Digest of Technical Papers, pp. 186-187, Jun. 2009. [40] J. Jang et al., “Vertical Cell Array using TCAT(Terabit Cell Array Transistor) Technology for Ultra High Density NAND Flash Memory,” Symposium on VLSI Technology Digest of Technical Papers, pp. 192-193, Jun. 2009. [41] H. Lue et al., “BE-SONOS: A Bandgap Engineered SONOS with Excellent Performance and Reliability,” International Electron Devices Meeting Technical Digest, pp. 547-550, Dec. 2005. [42] H. Lue et al., “A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device,” International Electron Devices Meeting Technical Digest, pp. 131-132, Dec. 2010. [43] R. Liu et al., “Reliability of Barrier Engineered Charge Trapping Devices for Sub-30nm NAND Flash,” International Electron Devices Meeting Technical Digest, pp. 745-748, 2009. [44] R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proceedings of the Royal Society of London, Vol. 119, No. 781, pp. 173–181, 1928. [45] T. Tanaka et al., “A Quick Intelligent Program Architecture for 3V-only NAND-EEPROMS,” Symposium on VLSI Circuits Digest of Technical Papers, pp. 20-21, Jun. 1992. [46] G. J. Hemink et al., “Fast and Accurate Programming Method for Multilevel NAND Flash EEPROM,” Symposium on VLSI Technology Digest of Technical Papers, pp. 129–130, Jun. 1995. [47] H. Nakamura et al., “A Novel Sense Amplifier for Flexible Voltage Operation NAND Flash Memories,” Symposium on VLSI Circuits Digest of Technical Papers, pp. 71–72, Jun. 1995. [48] T. Tanaka et al., “A Quick Intelligent Page Programming Architecture and a Shielded Bitline Sensing Method for 3V-only NAND Flash Memory,” IEEE Journal of Solid-State Circuits, vol. 29, no. 11, pp. 1366–1373, Nov. 1994. [49] K. Takeuchi et al., “A Double-Level-Vth Select Gate Array Architecture for Multi-Level NAND Flash Memories.” Symposium on VLSI Technology Digest of Technical Papers, pp. 69-70, Jun. 1995. [50] R. Cernea et al., U.S. Patent No. 7443757 – Non-volatile memory and method with reduced bitline crosstalk errors Assignee: SanDisk Corporation. [51] K. Takeuchi et al., “A negative Vth cell architecture for highly scalable, excellently noise immune and highly reliable NAND flash memories,” Symposium on VLSI Circuits Digest of Technical Papers, pp. 234–235, Jun. 1998. [52] C. Hung et al., “3D Stackable Vertical-Gate BE-SONOS NAND Flash with Layer-Aware Program-and-Read Schemes and Wave-Propagation Fail-Bit-Detection against Cross-Layer Process Variations,” Symposium on VLSI Technology Digest of Technical Papers, pp. C20-C21, Jun. 2013. [53] R. Micheloni, L. Crippa, and A. Marelli, Inside NAND Flash Memories, Springer, 2010. [54] L. Crippa et al., U.S. Patent No.7474577 – Circuit and method for retrieving data stored in semiconductor memory cells, Assignee: STMicroelectronics/Hynix Semiconductor. [55] T. Tanzawa et al., U.S. Patent No.5864504 – Nonvolatile semiconductor memory with temperature compensation for read-verify referencing scheme, Assignee: Kabushiki Kaisha Toshiba. [56] T. Cho et al., U.S. Patent No.6870766 – Multi-level Flash memory with temperature compensation, Assignee: Samsung Electronics Co., Ltd. [57] T. Vali et al., U.S. Patent No. US7936606 –Compensation of back pattern effect in a memory device. [58] J. Hsu, “Layer Aware Temperature Compensated Bit Line-Clamp Generator for 3D BE-SONOS TFT NAND Flash memory,” master’s thesis, National Tsing-Hua University, Department of Electrical Engineering, Hsinchu, Taiwan, 2014. [59] Y. Yang, “Page-buffer Circuit Design for 3D BE-SONOS TFT NAND FLASH Memory,” master’s thesis, National Tsing-Hua University, Department of Electrical Engineering, Hsinchu, Taiwan, 2012.
|