帳號:guest(3.142.201.175)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴乙婷
作者(外文):Lai, Yi Ting
論文名稱(中文):應用於三維反及閘式快閃記憶體之逆電流式感測及分層式溫度補償電路
論文名稱(外文):Reverse Current Sensing with Layer-aware Temperature compensation for 3D BE-SONOS TFT NAND Flash Memory
指導教授(中文):張孟凡
指導教授(外文):Chang, Meng Fan
口試委員(中文):洪浩喬
邱瀝毅
口試委員(外文):Hong, Hao Chiao
Chiou, Lih Yih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061570
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:83
中文關鍵詞:三維反及閘式快閃記憶體溫度補償逆電流感測分層式
外文關鍵詞:3DNAND Flash memorytemperature compensationreverse currentsensinglayer-aware
相關次數:
  • 推薦推薦:0
  • 點閱點閱:326
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近來,大容量資料儲存裝置的廣泛運用造就了反及閘式快閃記憶體無可取代的地位。憑藉著比其他平面半導體記憶體還小的元件面積,反及閘式快閃記憶體掌握了高元件密度以及低製造成本的優勢。
隨著科技的發展,現在最先進的反及閘式快閃記憶體已經微縮到小於二十奈米的等級。然而,製程微縮使得平面半導體的製造越來越困難。最糟的是,因製造困難而上升的成本甚至會比製程微縮所減少的成本還多。為了同時降低成本以及增加記憶體容量,三維反及閘式快閃記憶體應運而生。
由於架構上的限制,反及閘式快閃記憶體的隨機讀取速度十分緩慢。因此,反及閘式快閃記憶體必須以平行讀取來同時輸出大量資料以增加它的市場競爭力。
我們提出一種應用於三維垂直閘極 BE-SONOS 型式反及閘快閃記憶體的逆電流式感測及分層式溫度補償電路。這種逆電流式感測方式可以支援資料平行輸出,並且不受源極線上以及位元線耦合的雜訊影響。此外,此逆電流式感測專用的分層式溫度補償電路可以使之在 -40~125 ̊C下維持一定的資料可靠性。
Nowadays, the wide-spread usage of the large data storage devices contributes to the indispensable status of the NAND Flash memory. With the smallest cell area among the 2D memories, NAND Flash memory holds the superiority in cell density and cost.
The state-of-the-art 2D NAND Flash memory has reached 1X nanometer node. However, the technology scaling makes the fabrication of NAND Flash much more difficult than before. Worst of all, the cost caused by the fabrication difficulty even exceed the cost saved by the shrinking cell size. In order to reduce the bit cost while increasing the storage capacity at the same time, the 3D NAND Flash technology is developed.
Due to the structural limitation, the random access speed of NAND Flash memory is quite slow. As a result, the parallel sensing to simultaneously read out a large amount of data is essential to enhance the competitive capability of it.
We proposed a reverse current sensing scheme for 3DVG BE-SONOS NAND Flash memory with the layer-aware temperature compensation capability. It can support the parallel read to enlarge the data throughput; in addition, the proposed sensing scheme is totally immune to the source line noise and the BL cross-talk noise. Furthermore, the layer-aware temperature compensation can effectively maintain the reliability of the reverse current sensing at -40~125 ̊C.
指導教授推薦書 III
口試委員審定書 IV
摘要 V
ABSTRACT VI
致謝 VII
CONTENTS IX
LIST OF FIGURES XI
LIST OF TABLES XIII
CHAPTER 1. INTRODUCTION 1
1.1 NAND FLASH MEMORY APPLICATION 1
1.2 CHALLENGES OF NAND FLASH MEMORY 4
1.3 OVERVIEW OF THE THESIS 7
CHAPTER 2. THREE-DIMENSION VERTICAL GATE (3DVG) BE-SONOS TFT NAND FLASH MEMORY 8
2.1 BANDGAP ENGINEERED SILICON-OXIDE-NITRIDE- OXIDE-SILICON (BE-SONOS) MEMORY DEVICE 8
2.2 ARRAY ORGANIZATION 10
2.3 READ OPERATION 13
2.4 PROGRAM OPERATION 14
2.4.1 Self-Boost Program Inhibit (SBPI) Technique 14
2.4.2 Program Verification Algorithm 17
2.4.3 Incremental Step Pulse Programming (ISPP) 18
2.5 ERASE OPERATION 20
2.5.1 Hole Tunneling Erase 20
2.5.2 Self-Boost Erase Inhibit Technique (SBEI) 21
2.5.3 Erase Verification 22
CHAPTER 3. PREVIOUS SENSING SCHEME 24
3.1 PAGE BUFFER STRUCTURE 24
3.2 FORWARD VOLTAGE SENSING 26
3.2.1 Basic Concept 26
3.2.2 Interleaving Architecture 27
3.3 FORWARD CURRENT SENSING SCHEME 29
3.3.1 Basic Concept 29
3.3.2 Multi-Sensing Method 31
3.4 REVERSE VOLTAGE SENSING 33
3.4.1 Basic Concept 33
3.4.2 Temperature Compensation 34
3.4.3 Temperature Compensated BL-Clamp Generator 37
CHAPTER 4. CHALLENGES OF 3DVG NAND FLASH 38
4.1 BL COUPLING NOISE 38
4.2 COMMON SOURCE LINE NOISE 42
4.3 BACKGROUND PATTERN DEPENDENCY (BPD) 43
4.4 LAYER BY LAYER VTH REQUIREMENT 44
4.4.1 Basic Concept 44
4.4.2 Layer-Aware Program Verify (LAPV) 46
4.4.3 Layer-Aware Temperature Compensated BL-Clamp Generator Circuit [58] 47
CHAPTER 5. PROPOSED REVERSE CURRENT SENSING WITH LAYER-AWARE TEMPERATURE COMPENSATION SCHEME 48
5.1 PROPOSED REVERSE CURRENT SENSING 49
5.1.1 Basic concept 49
5.1.2 Circuit Designed for Reverse Read Sensing 51
5.2 PROPOSED LAYER-AWARE TEMPERATURE COMPENSATION SCHEME 52
5.2.1 Programming Policy on Tracking Cells 53
5.2.2 Proposed Circuit for Vth Tracking 55
CHAPTER 6. ANALYSIS AND COMPARISONS 58
6.1 MATHEMATICAL ANALYSIS OF REVERSE CURRENT SENSING 58
6.1.1 General Function of Reverse Current Sensing 58
6.1.2 Compensation on Variation Caused by Temperature and Inter-Layer Difference 59
6.2 SIMULATION WAVEFORM 61
6.3 COMPARISON WITH OTHER WORKS 64
6.3.1 Comparison with Other Sensing Schemes 64
6.3.2 Comparison with Other Layer-Aware Temperature Compensation Scheme 68
CHAPTER 7. CHIP IMPLEMENTATION 69
7.1 TEST CHIP STRUCTURE 69
7.2 DATA PATTERN DESIGN 70
7.3 TEST BLOCKS 70
7.4 LAYOUT AND AREA COST 71
CHAPTER 8. EXPERIMENTS AND CONCLUSION 73
8.1 TEST CHIP 73
8.2 MEASURED WAVEFORMS 73
8.3 CONCLUSIONS AND FUTURE WORK 77
REFERENCE 79
[1] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash
memory,” in Proceedings of the IEEE, vol. 91, pp. 489-502, 2003.
[2] F. Masuoka, M. Momodomi, Y. Iwata and R. Shirota, “New ultra high density EPROM and flash EEPROM with NAND structure cell,” International Electron Devices Meeting Technical Digest, pp. 552-555, Dec. 1987.
[3] T. Tanaka et al., “A 4-Mbit NAND-EEPROM with tight programmed Vt distribution,” Symposia on VLSI Circuits Digest of Technical Papers, pp. 105-106, Jun. 1990.
[4] M. Bauer, et al., “A multilevel-cell 32 Mb flash memory,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 132-133, Feb. 1995.
[5] K. D. Suh et. al., “A 3.3V 32Mb NAND Flash memory with Incremental Step Pulse Programming Scheme,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 128–129, Feb. 1995.
[6] J. K. Kim, K. Sakui el al., “A 120 mm2 64 Mb NAND flash memory achieving 180 ns/byte effective program speed,” Symposium on VLSI Circuits Digest of Technical Papers, pp.168-169, Jun. 1996.
[7] K.-T. Park et al., “A 3.3 V 128 Mb multi-level NAND Flash memory for mass storage applications,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 32–33, Feb. 1996.
[8] K. Imamiya et al., “A 130 mm 256 Mb NAND flash with hallow trench isolation technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 112–113, Feb. 1999.
[9] H. Nobukata et al., “A 144 Mb 8-level NAND flash memory with optimized pulse width programming,” Symposium on VLSI Circuits Digest of Technical Papers, pp. 39–40 Jun. 1999.
[10] T. Cho et al., “A 3.3-V 1-Gb multilevel NAND flash memory with non-uniform threshold voltage distribution,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 28–29, Feb. 2001.
[11] J. Lee et al., “A 1.8V 1-Gb NAND flash memory with 0.12um STI process technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 104–105, Feb. 2002.
[12] H. Nakamura et al. "A 125mm2 1Gb NAND Flash Memory with 10MB/s Program Throughput Solid-State Circuits Conference,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 82–83, 411, Feb. 2002.
[13] J. Lee, et al, “A 1.8V, 2Gb NAND Flash Memory for Mass Storage Applications,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 290-291, Feb. 2003.
[14] S. Lee et al., “A 3.3 V 4 Gb four-level NAND flash memory with 90nm CMOS technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 52–53, Feb. 2004.
[15] T. Hara, K. Fukuda, K. Kanazawa et al., “A 146mm2 8Gb NAND Flash Memory with 70nm CMOS Technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 44-45, Feb. 2005.
[16] R. Micheloni, et al., “A 4Gb 2b/cell NAND Flash Memory with Embedded 5b BCH ECC for 36MB/s System Read Throughput,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 142-143, Feb. 2006.
[17] K. Takeuchi, et al., “A 56nm CMOS 99mm2 8Gb Multi-level NAND Flash Memory with 10MB/s Program Throughput,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 507-516, Feb. 2006
[18] N. Shibata, H. Maejima, K. Isobe et al., “A 70nm 16Gb 16-Level-Cell NAND Flash Memory,” Symposium on VLSI Circuits Digest of Technical Papers, pp.190-191, Jun. 2007.
[19] K. Kanda et al., “A 120mm2 16Gb 4-MLC NAND Flash Memory with 43nm CMOS Technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 430–625, Feb. 2008.
[20] Yan Li, et al., “A 16Gb 3b/ Cell NAND Flash Memory in 56nm with 8MB/s Write Rate,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 506–632, Feb. 2008.
[21] A. Cernea et al., “A 34 MB/s-Program-Throughput 16Gb MLC NAND with All -Bitline Architecture in 56 nm,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 420-421, 624, Feb. 2008.
[22] R. Zeng et al., “A 172mm2 32Gb MLC NAND Flash Memory in 34nm CMOS,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 235-236, Feb. 2009.
[23] T. Futatsuyama et al., "”A 113mm2 32Gb 3b/cell NAND Flash Memory,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 242-243, Feb. 2009.
[24] S. Chang et al., “A 48nm 32Gb 8-Level NAND Flash Memory with 5.5MB/s Program Throughput,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 240-241, 241a, Feb. 2009.
[25] C. Trinh et al., "A 5.6MB/s 64Gb 4b/Cell NAND Flash Memory in 43nm CMOS,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 246-247, 247a, Feb. 2009.
[26] C. Lee et al., “A 32Gb MLC NAND Flash Memory with Vth Endurance Enhancing Schemes in 32nm CMOS,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 446-447 Feb. 2010.
[27] K. Fukuda et al., “A 151mm 2 64Gb MLC NAND Flash Memory in 24nm CMOS Technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 198-199, Feb. 2011.
[28] S. Lee et al., “A 32Gb MLC NAND Flash Memory with Vth Margin-Expanding Schemes in 26nm CMOS,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 198-199, Feb. 2011
[29] D. Lee et al., “A 64Gb 533Mb/s DDR Interface MLC NAND Flash in sub-20nm technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 430-432, Feb. 2012.
[30] N. Shibata et al., “A 19nm 112.8mm2 64Gb Multi-Level Flash Memory with 400Mb/s/pin 1.8V Toggle Mode Interface,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 422-424, Feb. 2012.
[31] Y. Li et al., “128Gb 3b/cell NAND Flash Memory in 19nm Technology with 18MB/s Write Rate and 400Mb/s Toggle Mode,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 436-437 Feb. 2012.
[32] G. Naso et al., “A 128Gb 3b/cell NAND Flash Design Using 20nm Planar-Cell Technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 218-219, Feb. 2013.
[33] S. Choi et al., “A 93.4mm2 64Gb MLC NAND-Flash Memory with 16nm CMOS Technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 328-329, Feb. 2014.
[34] M. Helm et al., “A 128Gb MLC NAND-Flash Device Using 16nm Planar Cell,” International Solid-State Circuits Conference Digest of Technical Papers, pp. 326-327, Feb. 2014.
[35] M. Sako et al., “A Low-Power 64Gb MLC NAND-Flash Memory in 15nm CMOS Technology,” International Solid-State Circuits Conference Digest of Technical Papers, pp.1-3, Feb. 2015.
[36] H. Tanaka et al., “Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory,” Symposium on VLSI Technology Digest of Technical Papers, pp. 14-15, Jun. 2007.
[37] M. H. White, D. A. Adams and J. Bu, “On the go with SONOS,” IEEE Circuits and Devices Magazine, vol. 16, no. 4, pp.22-31, 2000.
[38] R. Katsumata et al., “Pipe-shaped BiCS Flash Memory with 16 Stacked Layers and Multi-Level-Cell Operation for Ultra High Density storage devices,” Symposium on VLSI Technology Digest of Technical Papers, pp. 136-137, June 2009.
[39] J. Kim et al., “Vertical-Stacked-Array-Transistor (VSAT) for Ultra- high-density and Cost-effective NAND Flash Memory Devices and SSD (Solid State Drive),” Symposium on VLSI Technology Digest of Technical Papers, pp. 186-187, Jun. 2009.
[40] J. Jang et al., “Vertical Cell Array using TCAT(Terabit Cell Array Transistor) Technology for Ultra High Density NAND Flash Memory,” Symposium on VLSI Technology Digest of Technical Papers, pp. 192-193, Jun. 2009.
[41] H. Lue et al., “BE-SONOS: A Bandgap Engineered SONOS with Excellent Performance and Reliability,” International Electron Devices Meeting Technical Digest, pp. 547-550, Dec. 2005.
[42] H. Lue et al., “A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device,” International Electron Devices Meeting Technical Digest, pp. 131-132, Dec. 2010.
[43] R. Liu et al., “Reliability of Barrier Engineered Charge Trapping Devices for Sub-30nm NAND Flash,” International Electron Devices Meeting Technical Digest, pp. 745-748, 2009.
[44] R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proceedings of the Royal Society of London, Vol. 119, No. 781, pp. 173–181, 1928.
[45] T. Tanaka et al., “A Quick Intelligent Program Architecture for 3V-only NAND-EEPROMS,” Symposium on VLSI Circuits Digest of Technical Papers, pp. 20-21, Jun. 1992.
[46] G. J. Hemink et al., “Fast and Accurate Programming Method for Multilevel NAND Flash EEPROM,” Symposium on VLSI Technology Digest of Technical Papers, pp. 129–130, Jun. 1995.
[47] H. Nakamura et al., “A Novel Sense Amplifier for Flexible Voltage Operation NAND Flash Memories,” Symposium on VLSI Circuits Digest of Technical Papers, pp. 71–72, Jun. 1995.
[48] T. Tanaka et al., “A Quick Intelligent Page Programming Architecture and a Shielded Bitline Sensing Method for 3V-only NAND Flash Memory,” IEEE Journal of Solid-State Circuits, vol. 29, no. 11, pp. 1366–1373, Nov. 1994.
[49] K. Takeuchi et al., “A Double-Level-Vth Select Gate Array Architecture for Multi-Level NAND Flash Memories.” Symposium on VLSI Technology Digest of Technical Papers, pp. 69-70, Jun. 1995.
[50] R. Cernea et al., U.S. Patent No. 7443757 – Non-volatile memory and method with reduced bitline crosstalk errors Assignee: SanDisk Corporation.
[51] K. Takeuchi et al., “A negative Vth cell architecture for highly scalable, excellently noise immune and highly reliable NAND flash memories,” Symposium on VLSI Circuits Digest of Technical Papers, pp. 234–235, Jun. 1998.
[52] C. Hung et al., “3D Stackable Vertical-Gate BE-SONOS NAND Flash with Layer-Aware Program-and-Read Schemes and Wave-Propagation Fail-Bit-Detection against Cross-Layer Process Variations,” Symposium on VLSI Technology Digest of Technical Papers, pp. C20-C21, Jun. 2013.
[53] R. Micheloni, L. Crippa, and A. Marelli, Inside NAND Flash Memories, Springer, 2010.
[54] L. Crippa et al., U.S. Patent No.7474577 – Circuit and method for retrieving data stored in semiconductor memory cells, Assignee: STMicroelectronics/Hynix Semiconductor.
[55] T. Tanzawa et al., U.S. Patent No.5864504 – Nonvolatile semiconductor memory with temperature compensation for read-verify referencing scheme, Assignee: Kabushiki Kaisha Toshiba.
[56] T. Cho et al., U.S. Patent No.6870766 – Multi-level Flash memory with temperature compensation, Assignee: Samsung Electronics Co., Ltd.
[57] T. Vali et al., U.S. Patent No. US7936606 –Compensation of back pattern effect in a memory device.
[58] J. Hsu, “Layer Aware Temperature Compensated Bit Line-Clamp Generator for 3D BE-SONOS TFT NAND Flash memory,” master’s thesis, National Tsing-Hua University, Department of Electrical Engineering, Hsinchu, Taiwan, 2014.
[59] Y. Yang, “Page-buffer Circuit Design for 3D BE-SONOS TFT NAND FLASH Memory,” master’s thesis, National Tsing-Hua University, Department of Electrical Engineering, Hsinchu, Taiwan, 2012.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *