帳號:guest(3.12.162.33)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊少輔
作者(外文):Yang, Shao-Fu
論文名稱(中文):可直接地檢測時脈網路之微小延遲故障的測試方法
論文名稱(外文):Explicit Testing of Small Clock Delay Fault
指導教授(中文):黃錫瑜
指導教授(外文):Huang, Shi-Yu
口試委員(中文):蒯定明
周永發
李建模
李進福
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061560
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:41
中文關鍵詞:時脈訊號偏移時脈訊號故障測試微小延遲故障三維度晶片脈衝消失測試穿矽連接孔
外文關鍵詞:clock skewclock fault testingsmall delay fault3D-ICpulse-vanish testTSV
相關次數:
  • 推薦推薦:0
  • 點閱點閱:589
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在現今的三維度積體電路的製造產業中,除了時脈網路的設計與規劃是一件相當困難的任務之外,如何詳細的策畫針對時脈網路的測試方法也是一大挑戰。除此之外,在現今的研究已經明確指出,對於那些會對時脈訊號的偏移量感到非常敏感且無法自動適應調整的高效能表現電路設計而言,時脈訊號網路上只要出現了一些微小的瑕疵,就有很大可能會在晶片出場後引發某種在預期之外的失誤。因此,為了增加晶片製造的良率和確保其可靠度,未來在晶片製造出場前的製造測試或功能性測試的過程當中,必然需要有能力將這樣的瑕疵給檢定甚至診斷出。在這篇論文當中,我們呈獻了一種創新的測試方法,此測試方法可以幫助我們判斷時脈訊號網路上是否有任何微小的延遲錯誤。這個方法完全不需要對時脈訊號網路做出任何的改變更動,其更是有辦法透過離群值數據分析方法,偵測到將近40皮秒的微小延遲錯誤,同時判定出有哪些正反器是會被這個偵測到的延遲錯誤所影響。還有一點,由於我們所提出的測試方法其過程中所使用的測試訊號,並不會對待測目標電路造成而外的負擔,也不會因為其待測目標電路的不同而需要更換別種測試訊號。換句話說,在必要的時候這樣的測試方法是可以非常容易地藉由一內建自測試控制器而進行操作。
A clock network in a 3D-IC is not only difficult to design, but also challenging to test. For high-performance designs with a rigorous clock-skew requirement, studies have shown that small defects in a clock tree network could lead to unexpected failures in the field and thus it need to be identified during the manufacturing test or functional test in order to improve the yield and maintain the reliability. In this thesis, we present a novel test method to determine if a clock network has any small delay fault. This method does not require any change of the clock network, and it is capable of detecting a delay fault as small as 40ps through outlier analysis, while locating the FFs affected by the fault in the meantime. Furthermore, the overall test process does not involve loading of test patterns and thus can be conducted very easily by a Built-In Self-Test (BIST) controller when it needed.
Abstract ii
摘要 iii
致謝 iv
Content v
List of Figures vii
List of Table ix
Chapter I Introduction 1
I.1 Motivation and Background 1
I.2 Brief Introduction of Propose Test Method 5
I.3 Thesis Organization 6
Chapter II Preliminaries 7
II.1 Review of Pulse-Vanishing Test 7
Chapter III Propose Test Method 9
III.1 Target Fault 9
III.2 Impact of the Pulse-Width of the Test Clock 11
III.3 Scan-Excite-Scan Flush Test(SES-Flush Test) 13
III.4 Overall Test Procedure 19
Chapter IV Experimental Results 24
IV.1 Fault Free Pmin Range 24
IV.2 Clock Delay Fault Injection 28
IV.3 Case 1: Single Faulty FF 30
IV.4 Case 2: Multiple Faulty FFs 34
Chapter V Conclusion 37
Appendix 38
References 39
[1] V. F. Pavlidis, I. Savidis, and E. G. Friedman, “Clock Distribution Networks in 3-D Integrated Systems,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 12, pp. 2256-2266, Dec, 2011.
[2] H. Xu, V. F. Pavlidis, and G. De Micheli, “Effect of Process Variations in 3D Global Clock Distribution Networks,” ACM Journal on Emerging Technologies in Computing Systems, vol. 8, no. 3, Aug, 2012.
[3] S.-J. Wang, L. C.-H., and K. S.-M. Li, “Synthesis of 3D Clock Tree with Pre-bond Testability,” Proc. of IEEE International Conference on Circuits and Systems, pp. 2654-2657, 2013.
[4] F. W. Chen, and T. Hwang, “Clock-Tree Synthesis with Methodology of Reuse in 3D-IC,” ACM Journal on Emerging Technologies in Computing Systems, vol. 10, no. 3, Apr, 2014.
[5] K. H. Lu, S.-K. Ryu, Q. Zhao, X. Zhang, J. Im, R. Huang, and P. S. Ho, “Thermal Stress Induced Delamination of Through Silicon Vias in 3D Interconnects,” Proc. of IEEE Electronic Component and Technology Conf. (ECTC), pp. 40-45, June 2010.
[6] T. Frank, C. Chappaz, P. Leduc, L. Arnaud, F. Lorut, S. Moreau, A. Thuaire, R. El Farhane, and L. Anghel, “Resistance Increase Due to Electromigration Induced Depletion under TSV,” Proc. of IEEE Int'l Reliability Physics Symp. (IRPS), pp. 3F.4.1-3F.4.6, April 2011.
[7] B. Banijamali, S. Ramalingam, K Nagarajan, and R. Chaware, “Advanced Reliability Study of TSV Interposers and Interconnects for the 28nm Technology FPGA,” Proc. of IEEE Electronic Components and Technology Conf., pp. 285–290, 2011.


[8] T. Frank, S. Moreau, C. Chappaz, L. Arnaud, P. Leduc, A. Thuaire, and L. Anghel, "Electromigration Behavior of 3D-IC TSV Interconnects,” Proc. of IEEE Electronic Component and Technology Conf. (ECTC), pp.326-330, June 2012.
[9] Y. Higami, H. Takahashi, S. Kobayashi, and K. K. Saluja, “Fault Simulation and Test Generation for Clock Delay Faults,” Proc. of IEEE Asia and South Pacific Design Automation Conf., pp. 799-805, 2011.
[10] C. Metra, D. Rossi, M. Omana, J. M. Cazeaux, and T. M. Mak, “Can Clock Faults Be Detected through Functional Test ?,” Proc. IEEE of Design and Diagnostics of Electronic Circuits and Systems, pp. 166-171, 2006.
[11] C. Metra, M. Omana, T. M. Mak, and S. Tam, “Novel Approach to Clock Fault Testing for High Performance Microprocessors,” in IEEE VLSI Test Symp., 2007, pp. 441-446
[12] C. Metra, M. Omana, T. M. Mak, and S. Tam, “New Design for Testability Approach for Clock Fault Testing,” IEEE Transactions on Computers, vol. 61, no. 4, pp. 448-457, Apr, 2012.
[13] C. L. Lung, Y. S. Su, H. H. Huang, Y. Y. Shi, and S. C. Chang, “Through-Silicon Via Fault-Tolerant Clock Networks for 3-D ICs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 7, pp. 1100-1109, July, 2013.
[14] K. S.-M. Li, C. L. Lee, C. Su, and J. E. Chen, “Oscillation Ring Based Interconnect Test Scheme for SoC,” Proc. of IEEE Asia South Pacific Design Automation Conf., pp. 184–187, 2005.
[15] Y.-H. Lin, S.-Y. Huang, K.-H. Tsai, W.-T. Cheng, S. Sunter, Y.-F. Chou, and D.-M. Kwai, "Small Delay Testing for TSVs in 3D ICs", Proc. of IEEE Design Automation Conf., pp. 1031-1036, June 2012.


[16] K. Chakrabarty, “TSV Defects and TSV-Induced Circuit Failures: The Third Dimension in Test and Design-for-Test”, Proc. of Int’l Reliability Physics Symp., (IRPS), pp. 5F1.1-5F.1.12, 2012.
[17] F. Ye and K. Chakrabarty, “TSV Open Defects in 3D Integrated Circuits: Characterization, Test, and Optimal Spare Allocation”, Proc. of Design Automation Conf., pp. 10240-1030, June 2012.
[18] C.-C. Chi, C.-W. Wu, M.-J. Wang, H.-C. Lin, “3D-IC Interconnect Test, Diagnosis, and Repair,” Proc. of IEEE VLSI Test Symp, pp. 1-6, 2013.
[19] S.-Y. Huang, J.-Y. Lee, K.-H. Tsai, and W.-T. Cheng, “At-Speed BIST for Interposer Wires Supporting On-the-Spot Diagnosis,” Proc. of Int’l On-Line Test Symp., June 2013.
[20] S.-Y. Huang, J.-Y. Lee, K.-H. (Hans) Tsai, and W.-T. Cheng, “Pulse-Vanishing Test for Interposers Wires in 2.5-D IC,” IEEE Trans. on Computer-Aided Design of Electronic Circuits (TCAD), Vol. 33, No. 8, pp. 1258-1268, Aug. 2014.
[21] S.-Y. Huang, H.-X. Li, and Z.-F. Zeng, “On-Line Transition-Time Monitoring for Die-to-Die Interconnects in 3D ICs,” Proc. of IEEE Asian Test Symp., pp. 162-167, 2014.
[22] P. R. O’Brien and T. L. Savarino, “Modeling the Driving-Point Characteristic of Resistive Interconnect for Accurate Delay Estimation,” Proc. of Design Automation Conf., pp. 512–515, Nov. 1989.
[23] “CIC Reference Flow for Cell-based IC Design”, Chip Implementation Center, CIC, Taiwan, Document no. CIC-DSD-RD-08-01, 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *