|
1.Endy, D., Foundations for engineering biology. Nature, 2005. 438(7067): p. 449-53. 2.Gardner, T.S., C.R. Cantor, and J.J. Collins, Construction of a genetic toggle switch in Escherichia coli. Nature, 2000. 403(6767): p. 339-42. 3.Elowitz, M.B. and S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature, 2000. 403(6767): p. 335-8. 4.Stricker, J., et al., A fast, robust and tunable synthetic gene oscillator. Nature, 2008. 456(7221): p. 516-9. 5.Chang, Y.C., C.L. Lin, and T. Jennawasin, Design of synthetic genetic oscillators using evolutionary optimization. Evol Bioinform Online, 2013. 9: p. 137-50. 6.Rinaudo, K., et al., A universal RNAi-based logic evaluator that operates in mammalian cells. Nat Biotechnol, 2007. 25(7): p. 795-801. 7.Sohka, T., et al., An externally tunable bacterial band-pass filter. Proc Natl Acad Sci U S A, 2009. 106(25): p. 10135-40. 8.Sohka, T., R.A. Heins, and M. Ostermeier, Morphogen-defined patterning of Escherichia coli enabled by an externally tunable band-pass filter. J Biol Eng, 2009. 3: p. 10. 9.Pai, A., et al., Engineering multicellular systems by cell-cell communication. Curr Opin Biotechnol, 2009. 20(4): p. 461-70. 10.Mikami, Y., et al., Osteogenic gene transcription is regulated via gap junction-mediated cell-cell communication. Stem Cells Dev, 2015. 24(2): p. 214-27. 11.Lu, T.K., A.S. Khalil, and J.J. Collins, Next-generation synthetic gene networks. Nat Biotechnol, 2009. 27(12): p. 1139-50. 12.Wang, B., et al., Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun, 2011. 2: p. 508. 13.Silva-Rocha, R. and V. de Lorenzo, Engineering multicellular logic in bacteria with metabolic wires. ACS Synth Biol, 2014. 3(4): p. 204-9. 14.Chuang, C.H. and C.L. Lin, Synthesizing genetic sequential logic circuit with clock pulse generator. BMC Syst Biol, 2014. 8: p. 63. 15.Tamsir, A., J.J. Tabor, and C.A. Voigt, Robust multicellular computing using genetically encoded NOR gates and chemical 'wires'. Nature, 2011. 469(7329): p. 212-5. 16.Regot, S., et al., Distributed biological computation with multicellular engineered networks. Nature, 2011. 469(7329): p. 207-11. 17.Basu, S., et al., A synthetic multicellular system for programmed pattern formation. Nature, 2005. 434(7037): p. 1130-4. 18.Bassler, B.L., How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol, 1999. 2(6): p. 582-7. 19.Basu, S., et al., Spatiotemporal control of gene expression with pulse-generating networks. Proc Natl Acad Sci U S A, 2004. 101(17): p. 6355-60. 20.You, L., et al., Programmed population control by cell-cell communication and regulated killing. Nature, 2004. 428(6985): p. 868-71. 21.McDaniel, R. and R. Weiss, Advances in synthetic biology: on the path from prototypes to applications. Curr Opin Biotechnol, 2005. 16(4): p. 476-83. 22.Ron Weiss, T.F.K.J., Engineered communications for microbial robotics. 2001. 2054: p. 1-16. 23.Chen, Y.P. and D.E. Goldberg, Convergence time for the linkage learning genetic algorithm. Evol Comput, 2005. 13(3): p. 279-302. 24.Zhang, F. and J. Keasling, Biosensors and their applications in microbial metabolic engineering. Trends Microbiol, 2011. 19(7): p. 323-9. 25.Verma, N. and M. Singh, Biosensors for heavy metals. Biometals, 2005. 18(2): p. 121-9. 26.Bontidean, I., et al., Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens Bioelectron, 2003. 18(5-6): p. 547-53. 27.Jarup, L., Hazards of heavy metal contamination. Br Med Bull, 2003. 68: p. 167-82. 28.Wang, B., M. Barahona, and M. Buck, A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens Bioelectron, 2013. 40(1): p. 368-76. 29.Vijayaraghavan, K. and Y.S. Yun, Bacterial biosorbents and biosorption. Biotechnol Adv, 2008. 26(3): p. 266-91. 30.Lu, W.B., et al., Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J Hazard Mater, 2006. 134(1-3): p. 80-6. 31.Hall, J.L., Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot, 2002. 53(366): p. 1-11. 32.Macomber, L. and J.A. Imlay, The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A, 2009. 106(20): p. 8344-9. 33.Dupont, C.L., G. Grass, and C. Rensing, Copper toxicity and the origin of bacterial resistance--new insights and applications. Metallomics, 2011. 3(11): p. 1109-18. 34.Bondarczuk, K. and Z. Piotrowska-Seget, Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol Toxicol, 2013. 29(6): p. 397-405. 35.Franke, S., et al., Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol, 2003. 185(13): p. 3804-12. 36.Ravikumar, S., et al., Construction of copper removing bacteria through the integration of two-component system and cell surface display. Appl Biochem Biotechnol, 2011. 165(7-8): p. 1674-81. 37.Munson, G.P., et al., Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol, 2000. 182(20): p. 5864-71. 38.Waters, C.M. and B.L. Bassler, Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol, 2005. 21: p. 319-46. 39.McFall-Ngai, M.J. and E.G. Ruby, Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science, 1991. 254(5037): p. 1491-4. 40.Dunlap, P.V. and A. Kuo, Cell density-dependent modulation of the Vibrio fischeri luminescence system in the absence of autoinducer and LuxR protein. J Bacteriol, 1992. 174(8): p. 2440-8. 41.Ruby, E.G. and K.H. Nealson, Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica; a model of symbiosis based on bacterial studies. Biol Bull, 1976. 151(3): p. 574-86. 42.Darch, S.E., et al., Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc Natl Acad Sci U S A, 2012. 109(21): p. 8259-63. 43.Engebrecht, J. and M. Silverman, Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci U S A, 1984. 81(13): p. 4154-8. 44.Val, D.L. and J.E. Cronan, Jr., In vivo evidence that S-adenosylmethionine and fatty acid synthesis intermediates are the substrates for the LuxI family of autoinducer synthases. J Bacteriol, 1998. 180(10): p. 2644-51. 45.Hanzelka, B.L. and E.P. Greenberg, Quorum sensing in Vibrio fischeri: evidence that S-adenosylmethionine is the amino acid substrate for autoinducer synthesis. J Bacteriol, 1996. 178(17): p. 5291-4. 46.Miller, M.B. and B.L. Bassler, Quorum sensing in bacteria. Annu Rev Microbiol, 2001. 55: p. 165-99. 47.Pearson, J.P., et al., A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 1995. 92(5): p. 1490-4. 48.Brint, J.M. and D.E. Ohman, Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol, 1995. 177(24): p. 7155-63. 49.Passador, L., et al., Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science, 1993. 260(5111): p. 1127-30. 50.C. H. Wu, W. H. Zhang, and B. S. Chen, Multiobjective H-2/H-infinity synthetic gene network design based on promoter libraries, Mathematical Biosciences, vol. 233, pp. 111-125, Oct 2011. 51.C. H. Wu, H. C. Lee, and B. S. Chen, Robust synthetic gene network design via library-based search method, Bioinformatics, vol. 27, pp. 2700-2706, Oct 1 2011. 52. Y. Y. Lee, C. Y. Hsu, L. J. Lin, C. C. Chang, H. C. Cheng, T. H. Yeh, et al., Systematic design methodology for robust genetic transistors based on I/O specifications via promoter-RBS libraries, Bmc Systems Biology, vol. 7, Oct 27 2013.
|