帳號:guest(3.145.48.115)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李健興
作者(外文):Li, Jian-Sing
論文名稱(中文):利用搜索元件庫方法建立具有檢測能力和傳導能力及敏感度之合成多分子強健通訊系統設計
論文名稱(外文):Robust Multicellular Synthetic Molecular Communication System Design with Desired Detection Capability, Transduction Ability and Sensitivity: Library-Based Searching Approach
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):沈若樸
蘭宜錚
口試委員(外文):Roa-Pu Shen
Ethan-I Lan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061558
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:78
中文關鍵詞:多分子通訊系統檢測能力傳導能力系統敏感度搜索元件庫方法
外文關鍵詞:Multicellular molecular communicationDetection capabilityTransduction abilitySystem sensitivityLibrary-based searching method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:305
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在合成生物學中,為了達到更複雜的生物系統工程,過程中將會遇到一些困難及挑戰。第一,在基因電路中,因受限於基因元件的數量限制,欲表現多種特定功能在單一分子中是有困難的。第二,單一分子不容易達到分子和分子間溝通配合的行為。在此篇研究中,利用搜索元件庫方法來設計並達到強健性的多分子通訊系統。首先,我們為多分子通信系統建立數個良好特性的啟動子-核醣體結合位元件庫。
接著,我們從對應的啟動子-核醣體結合位元件庫選擇出一組最適當的啟動子-核醣體結合位元件來完成多分子通信系統中設計者所需的檢測能力和傳導能力及敏感度,並有效地提高了系統性能及衰減內部擾動和通道干擾對系統的影響。再來我們提出利用搜索元件庫的方法來解決合成生物學對於多分子通信系統中多目標設計的問題。最後,透過數個設計實例與實驗結果來說明其設計的步驟及過程,並確認我們所提出的系統化設計方法在多分子通信系統中確實完成設計者所需要的規格。
In synthetic biology, there are several challenges to deal with for more complex biological systems. First, it is difficult to behave all specific functions in single-celled organisms because of the limitation of component numbers in genetic circuit. Second, it is not easy to achieve a coordinated behavior among single-celled organisms through cell-to-cell communication. In this study, a library-based searching approach is designed for multicellular molecular communication system with some desired system performance. Several well-characterized promoter-RBS libraries are constructed at first for systematic design of multicellular molecular communication system. Then, we select the most adequate set of promoter-RBS components from the corresponding promoter-RBS libraries to design a multicellular molecular communication system with desired detection capability, transduction ability and system sensitivity to efficiently improve the system performance and attenuate the effect of intrinsic random fluctuations and channel noises. A library-based searching method is also proposed to solve the multi-objective design problem of multicellular molecular communication system in synthetic biology. Finally, several design examples with experiment results are given to illustrate the design procedure and to confirm the system performance of multicellular molecular communication system by the proposed systematic design method.
摘 要…………………………………………………………………………………………………i
Abstract………………………………………………………………………………………ii
誌謝……..…………………………………………………………………………………………iii
Content……………………………………………………………………………………………iv
List of Figures………………………………………………………………………v
List of Tables…………………………………………………………………………vi
Introduction………………………………………………………………………………1
1.1 Background…………………………………………………………………………1
1.2 Introduction of multicellular molecular communication system………………………………5
Construction of the promoter-RBS libraries for multicellular molecular communication system …8
2.1 Construction of the component libraries for copper biosensor genetic circuit in sender cell…9
2.2 Construction of the component libraries for synthtic genetic circuit in receiver cell………10
2.3 Dynamic models of sender cell with copper biosensor circuit………………………………11
2.4 Dynamic models of receiver cell……………………………………………14
2.5 Design methodology for the multicellular molecular communication system………………16
Design specifications and procedure of multicellular molecular communication system…………20
3.1 Design Specifications for the multicellular molecular communication system……………21
3.2 Design Procedure for the multicellular molecular communication system……………23
3.3 Synthetic gene design examples for multicellular molecular communication system in silico and verification via experiment in vivo…………………………………………………………24
3.4 Performance comparison for multicellular molecular communication system in silico and in vivo……………………32
Discussion………………………………………………………………………………………34
Conclusion…………………………………………………………………………………36
Reference……………………………………………………………………………………38
Figures…………………………………………………………………………………………43
Tables……………………………………………………………………………………………53
Supplementary Information…………………………………………61
A. Dynamic equation of catalysis process…61
B. Supplementary Figures……………………………………………63
C. Material and Method…………………………………………………64



1.Endy, D., Foundations for engineering biology. Nature, 2005. 438(7067): p. 449-53.
2.Gardner, T.S., C.R. Cantor, and J.J. Collins, Construction of a genetic toggle switch in Escherichia coli. Nature, 2000. 403(6767): p. 339-42.
3.Elowitz, M.B. and S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature, 2000. 403(6767): p. 335-8.
4.Stricker, J., et al., A fast, robust and tunable synthetic gene oscillator. Nature, 2008. 456(7221): p. 516-9.
5.Chang, Y.C., C.L. Lin, and T. Jennawasin, Design of synthetic genetic oscillators using evolutionary optimization. Evol Bioinform Online, 2013. 9: p. 137-50.
6.Rinaudo, K., et al., A universal RNAi-based logic evaluator that operates in mammalian cells. Nat Biotechnol, 2007. 25(7): p. 795-801.
7.Sohka, T., et al., An externally tunable bacterial band-pass filter. Proc Natl Acad Sci U S A, 2009. 106(25): p. 10135-40.
8.Sohka, T., R.A. Heins, and M. Ostermeier, Morphogen-defined patterning of Escherichia coli enabled by an externally tunable band-pass filter. J Biol Eng, 2009. 3: p. 10.
9.Pai, A., et al., Engineering multicellular systems by cell-cell communication. Curr Opin Biotechnol, 2009. 20(4): p. 461-70.
10.Mikami, Y., et al., Osteogenic gene transcription is regulated via gap junction-mediated cell-cell communication. Stem Cells Dev, 2015. 24(2): p. 214-27.
11.Lu, T.K., A.S. Khalil, and J.J. Collins, Next-generation synthetic gene networks. Nat Biotechnol, 2009. 27(12): p. 1139-50.
12.Wang, B., et al., Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun, 2011. 2: p. 508.
13.Silva-Rocha, R. and V. de Lorenzo, Engineering multicellular logic in bacteria with metabolic wires. ACS Synth Biol, 2014. 3(4): p. 204-9.
14.Chuang, C.H. and C.L. Lin, Synthesizing genetic sequential logic circuit with clock pulse generator. BMC Syst Biol, 2014. 8: p. 63.
15.Tamsir, A., J.J. Tabor, and C.A. Voigt, Robust multicellular computing using genetically encoded NOR gates and chemical 'wires'. Nature, 2011. 469(7329): p. 212-5.
16.Regot, S., et al., Distributed biological computation with multicellular engineered networks. Nature, 2011. 469(7329): p. 207-11.
17.Basu, S., et al., A synthetic multicellular system for programmed pattern formation. Nature, 2005. 434(7037): p. 1130-4.
18.Bassler, B.L., How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol, 1999. 2(6): p. 582-7.
19.Basu, S., et al., Spatiotemporal control of gene expression with pulse-generating networks. Proc Natl Acad Sci U S A, 2004. 101(17): p. 6355-60.
20.You, L., et al., Programmed population control by cell-cell communication and regulated killing. Nature, 2004. 428(6985): p. 868-71.
21.McDaniel, R. and R. Weiss, Advances in synthetic biology: on the path from prototypes to applications. Curr Opin Biotechnol, 2005. 16(4): p. 476-83.
22.Ron Weiss, T.F.K.J., Engineered communications for microbial robotics. 2001. 2054: p. 1-16.
23.Chen, Y.P. and D.E. Goldberg, Convergence time for the linkage learning genetic algorithm. Evol Comput, 2005. 13(3): p. 279-302.
24.Zhang, F. and J. Keasling, Biosensors and their applications in microbial metabolic engineering. Trends Microbiol, 2011. 19(7): p. 323-9.
25.Verma, N. and M. Singh, Biosensors for heavy metals. Biometals, 2005. 18(2): p. 121-9.
26.Bontidean, I., et al., Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens Bioelectron, 2003. 18(5-6): p. 547-53.
27.Jarup, L., Hazards of heavy metal contamination. Br Med Bull, 2003. 68: p. 167-82.
28.Wang, B., M. Barahona, and M. Buck, A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens Bioelectron, 2013. 40(1): p. 368-76.
29.Vijayaraghavan, K. and Y.S. Yun, Bacterial biosorbents and biosorption. Biotechnol Adv, 2008. 26(3): p. 266-91.
30.Lu, W.B., et al., Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J Hazard Mater, 2006. 134(1-3): p. 80-6.
31.Hall, J.L., Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot, 2002. 53(366): p. 1-11.
32.Macomber, L. and J.A. Imlay, The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A, 2009. 106(20): p. 8344-9.
33.Dupont, C.L., G. Grass, and C. Rensing, Copper toxicity and the origin of bacterial resistance--new insights and applications. Metallomics, 2011. 3(11): p. 1109-18.
34.Bondarczuk, K. and Z. Piotrowska-Seget, Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol Toxicol, 2013. 29(6): p. 397-405.
35.Franke, S., et al., Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol, 2003. 185(13): p. 3804-12.
36.Ravikumar, S., et al., Construction of copper removing bacteria through the integration of two-component system and cell surface display. Appl Biochem Biotechnol, 2011. 165(7-8): p. 1674-81.
37.Munson, G.P., et al., Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol, 2000. 182(20): p. 5864-71.
38.Waters, C.M. and B.L. Bassler, Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol, 2005. 21: p. 319-46.
39.McFall-Ngai, M.J. and E.G. Ruby, Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science, 1991. 254(5037): p. 1491-4.
40.Dunlap, P.V. and A. Kuo, Cell density-dependent modulation of the Vibrio fischeri luminescence system in the absence of autoinducer and LuxR protein. J Bacteriol, 1992. 174(8): p. 2440-8.
41.Ruby, E.G. and K.H. Nealson, Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica; a model of symbiosis based on bacterial studies. Biol Bull, 1976. 151(3): p. 574-86.
42.Darch, S.E., et al., Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc Natl Acad Sci U S A, 2012. 109(21): p. 8259-63.
43.Engebrecht, J. and M. Silverman, Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci U S A, 1984. 81(13): p. 4154-8.
44.Val, D.L. and J.E. Cronan, Jr., In vivo evidence that S-adenosylmethionine and fatty acid synthesis intermediates are the substrates for the LuxI family of autoinducer synthases. J Bacteriol, 1998. 180(10): p. 2644-51.
45.Hanzelka, B.L. and E.P. Greenberg, Quorum sensing in Vibrio fischeri: evidence that S-adenosylmethionine is the amino acid substrate for autoinducer synthesis. J Bacteriol, 1996. 178(17): p. 5291-4.
46.Miller, M.B. and B.L. Bassler, Quorum sensing in bacteria. Annu Rev Microbiol, 2001. 55: p. 165-99.
47.Pearson, J.P., et al., A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 1995. 92(5): p. 1490-4.
48.Brint, J.M. and D.E. Ohman, Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol, 1995. 177(24): p. 7155-63.
49.Passador, L., et al., Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science, 1993. 260(5111): p. 1127-30.
50.C. H. Wu, W. H. Zhang, and B. S. Chen, Multiobjective H-2/H-infinity synthetic gene network design based on promoter libraries, Mathematical Biosciences, vol. 233, pp. 111-125, Oct 2011.
51.C. H. Wu, H. C. Lee, and B. S. Chen, Robust synthetic gene network design via library-based search method, Bioinformatics, vol. 27, pp. 2700-2706, Oct 1 2011.
52. Y. Y. Lee, C. Y. Hsu, L. J. Lin, C. C. Chang, H. C. Cheng, T. H. Yeh, et al., Systematic design methodology for robust genetic transistors based on I/O specifications via promoter-RBS libraries, Bmc Systems Biology, vol. 7, Oct 27 2013.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *