帳號:guest(3.12.155.2)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊哲昌
作者(外文):Yang, Che Chang
論文名稱(中文):基於虛擬點偵測器概念之雷射掃描式光學解析度光聲顯微影像系統開發
論文名稱(外文):Development of a Virtual-Point-Detector-Concept Based Laser-scanning Optical-resolution Photoacoustic Micro-imaging System
指導教授(中文):李夢麟
指導教授(外文):Li, Meng Lin
口試委員(中文):蔡孟燦
陳之碩
口試委員(外文):Tsai, Meng Tsan
Chen, Chi Shuo
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061555
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:62
中文關鍵詞:雷射掃描式光學解析度光聲顯微鏡虛擬點偵測器血管造影
外文關鍵詞:Laser-scanning optical-resolution photoacoustic microscopyVirtual point detectorMicro-vascular imaging
相關次數:
  • 推薦推薦:0
  • 點閱點閱:533
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來為了增加三維成像速度,雷射掃描式光學解析度光聲顯微鏡已被提出並使用。此系統常使用水聽筒或是非聚焦式探頭以得到較大的掃描視野,然而這兩類探頭將使掃描視野及訊雜比出現折衷。此外非聚焦式探頭的使用還會產生空間脈衝響應效應─由掃描視野內的光聲源所導致的不均勻探頭壓電響應。此效應將使軸向解析度下降,並降低高頻寬超音波探頭應用於光譜式顯微鏡上的效果。為了解決這些問題,我們提出一個適用於光學解析度光聲顯微鏡的「虛擬點偵測器」概念,此概念除了同時增加訊雜比、降低空間脈衝響應之效應外,還能維持系統的高速掃描能力及足夠的掃描視野。聚焦式探頭的聚焦點將被視作虛擬點偵測器,目的是為了在具有光聲束結合器的情況下仍能夠盡可能地靠近樣品,並可被當作是一個真實的點偵測器。我們利用Filed II模擬及現有的超音波成像系統來初步驗證此概念之可行性。模擬及實驗結果皆呈現了訊雜比及掃描視野之間確實會有折衷的情況,此折衷情況由虛擬點偵測器與樣品之間的距離所決定,故可根據不同的應用來決定掃描視野及訊雜比的大小。其中使用虛擬點偵測器概念相較於非聚焦式探頭確實可得到較高的訊雜比,而空間脈衝響應效應的抑制也被A-line訊號、頻譜及相關度圖所驗證。不同中心頻率探頭間的比較、鼠耳活體造影及初步的鼠腦影像結果也已被呈現。
Recently, laser-scanning optical-resolution photoacoustic microscopy (LSOR-PAM) has been proposed to increase the 3D imaging speed; however, its use of a needle hydrophone or an unfocused ultrasound transducer for obtaining large field-of-view (FOV) compromises the signal-to-noise ratio (SNR). LSOR-PAM with an unfocused transducer also suffers the spatial impulse response (SIR) effect – the non-uniform piezoelectric response of the transducer to the photoacoustic sources in the FOV. The SIR effect also deteriorates the axial resolution and hinders the use of the high frequency broadband transducer required for spectroscopic applications. To solve these problems, we propose a virtual point detector concept for LSOR-PAM to improve the SNR and mitigate the SIR effect while retaining the imaging speed and minimizing the loss in the FOV. The focal point of a focused transducer is viewed as a virtual point detector which can be placed as close to the sample as possible to act like a real one even though the LSOR-PAM is with an optical and acoustic beam combiner. We preliminarily verify the feasibility of the concept by Field II simulation and existing ultrasound imaging system. Simulation results and experimental results both showed that there was a trade-off between the SNR and FOV determined by the distance between the virtual point detector and sample, which can be well tailored for different applications. The higher SNR than that of LSOR-PAM using an unfocused transducer could be obtained. Moreover, the suppression of the SIR effect was proven by A-line signals, spectrums and correlation maps. Comparison between the transducers with different center frequencies, in vivo micro-vascular imaging of a mouse ear and the preliminary results of a mouse brain were also drawn.
摘要 I
Abstract II
Table of Contents III
List of Figures V
Chapter 1 Introduction 1
1.1 Transcranial Imaging of Neuro-vascular Coupling 1
1.2 Photoacoustic Imaging 2
1.2.1 Principles of Photoacoustic Imaging 2
1.2.2 Optical-resolution Photoacoustic Microscopy 3
1.3 Motivations 6
1.4 Thesis Organization 6
Chapter 2 Materials and Methods 8
2.1 Reflection-mode Laser-scanning OR-PAM 8
2.1.1 System Architectures and Specifications 8
2.1.2 Scanning Mechanism 10
2.1.3 LSOR-PAM with an Unfocused Transducer 12
2.1.4 Spatial Impulse Response Effect 13
2.1.5 LSOR-PAM with a Needle Transducer 15
2.2 Virtual Point Detector Concept 16
2.3 Field II Simulation 18
2.3.1 Acoustic Field 18
2.3.2 Spatial Impulse Response Effect 23
2.3.3 Further Improvement of the Proposed Method 24
Chapter 3 Experimental Results and Discussion 27
3.1 System Improvement 27
3.1.1 Improvement of the Imaging Speed 27
3.1.2 Setup of a Custom-made Digital Microscope 28
3.1.3 Fast-adjustment of the Scanning Misalignment 30
3.1.4 Enhancement of the Signal Bandwidth 31
3.2 Verification of the Proposed Method 33
3.2.1 Ultrasound Imaging System 33
3.2.2 Trade-off between the SNR and FOV 35
3.2.3 Mitigation of Spatial Impulse Response Effect 42
3.3 LSOR-PAM of a Mouse Ear In Vivo 48
3.3.1 Small FOV Case 48
3.3.2 Large FOV Case 52
Chapter 4 Conclusions and Future Work 56
4.1 Conclusions 56
4.2 Future Work 57
Reference 59
1 Fahmeed Hyder, Kevin L. Behar, Margaret A. Martin, Andrew M. Blamire, and Robert G. Shulman, “Dynamic Magnetic Resonance Imaging of the Rat Brain During Forepaw Stimulation,” Journal of Cerebral Blood Flow and Metabolism, 14(4), 649-655 (1994).
2 Govind Nair and Timothy Q. Duong, “Echo-Planar BOLD fMRI of Mice on a Narrow-Bore 9.4 T Magnet,” Magn. Reson. Med. 52(2), 430–434 (2004).
3 Joseph P. Culver, Andrew M. Siegel, Maria Angela Franceschini, Joseph B. Mandeville, and David A. Boas, “Evidence that cerebral blood volume can provide brain activation maps with better spatial resolution than deoxygenated hemoglobin,” Neuroimage 27(4), 947-959 (2005).
4 Andrew M Siegel, Joseph P Culver, Joseph B Mandeville and David A Boas, “Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation,” Phys. Med. Biol 48, 1391–1403 (2003).
5 Sava Sakadžić, Emmanuel Roussakis, Mohammad A. Yaseen, Emiri T. Mandeville, Vivek J. Srinivasan, Ken Arai, Svetlana Ruvinskaya, Anna Devor1, Eng H. Lo, Sergei A. Vinogradov, and David A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nature Methods 7(9), 755–759 (2010).
6 DS Kim, TQ Duong, SG Kim, “High-resolution mapping of iso-orientation columns by fMRI,” Nat. neuroscience 3(2), 164-169 (2000).
7 Gabriele Gratton and Monica Fabiani, “Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity,” Psychonomic Bulletin & Review 5(4), 535-563 (1998).
8 L. V. Wang and H.-i Wu, Biomedical Optics: Principles and Imaging (2007).
9 M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Review of Scientific Instruments 77, 041101-1 – 041101-22 (2006).
10 L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nature Photonics 3(9), 503–509 (2009).
11 A. G. Bell, “On the Production and Reproduction of Sound by Light,” American Journal of Science 20, 305-324 (1880).
12 A. C. Tam, “Applications of photoacoustic sensing techniques,” Reviews of Modern Physics 58, 381–431 (1986).
13 Konstantin Maslov, Hao F. Zhang, Song Hu, and Lihong V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929-931 (2008).
14 Lei Li, Chenghung Yeh, Song Hu, Lidai Wang, Brian T. Soetikno, Ruimin Chen, Qifa Zhou, K. Kirk Shung, Konstantin I. Maslov, and Lihong V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39(7), 2117-2120 (2012).
15 Chi Zhang, Konstantin Maslov, Song Hu, Ruimin Chen, Qifa Zhou, K.Kirk Shung, and Lihong V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” Journal of Biomedical Optics 17(2), 020501-(1-3) (2012).
16 Wei Song, Qing Wei, Wenzhong Liu, Tan Liu, Ji Yi, Nader Sheibani, Amani A. Fawzi, Robert A. Linsenmeier, Shuliang Jiao & Hao F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Scientific Reports, 6525 (2014).
17 Tan Liu, Qing Wei, Wei Song, Janice M. Burke, Shuliang Jiao, and Hao F. Zhang, “Near-infrared light photoacoustic ophthalmoscopy,” Biomedical Optics Express, 3(4) 792-799 (2012).
18 Hao F. Zhang, Konstantin Maslov, and Mathangi Sivaramakrishnan, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).
19 Jing Wang, Tan Liu, Shuliang Jiao, Ruimin Chen, Qifa Zhou, K. Kirk Shung, L. V. Wang and H.F. Zhang, “Saturation effect in functional photoacoustic imaging,” Journal of Biomedical Optics 15(2), 021317 (2010).
20 Song Hu, Konstantin Maslov, and Lihong V. Wang, “In vivo functional chronic imaging of a small animal model using ORPAM,” Med. Phys. 36(6), 2320-2323, (2009).
21 Song Hu, Konstantin Maslov, and Lihong V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” OPTICS LETTERS 36(7), 1134-1136 (2011).
22 Zhixing Xie, Shuliang Jiao, Hao F. Zhang, and Carmen A. Puliafito, “Laser-scanning optical-resolution microscopy,” OPTICS LETTERS 34(12), 1771-1773 (2009).
23 Bin Rao, Li Li, Konstantin Maslov, and Lihong Wang, “Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging,” Opt. Lett. 35(10), 1521-1523 (2010).
24 Tan Liu, Qing Wei, Jing Wang, Shuliang Jiao, and Hao F. Zhang, "Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen," Biomedical Optics Express 2(5), 1359–1365 (2011).
25 Junjie Yao, Lidai Wang, Joon-Mo Yang, Konstantin I Maslov, Terence T W Wong, Lei Li, Chih-Hsien Huang, Jun Zou & Lihong V Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nature Methods 12(5), 407-410 (2015).
26 Junjie Yao, Chih-Hsien Huang, Lidai Wang, Joon-Mo Yang, Liang Gao, Konstantin I. Maslov, Jun Zou, and Lihong V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” Journal of Biomedical Optics 17(8), 080505-1 (2012).
27 P. Hajireza, W. Shi, and R. J. Zemp, “Label-free in vivo fiber-based optical-resolution photoacoustic microscopy,” Opt. Lett., 36(20), 4107-4109 (2011).
28 Wei Shi, Peng Shao, Parsin Hajireza, Alexander Forbrich, and Roger J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” Journal of Biomedical Optics 18(2), 026001 (2013).
29 Wei Shi, Parsin Hajireza, Peng Shao, Alexander Forbrich, Roger J. Zemp, “In vivo near-realtime volumetric opticalresolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser,” Opt. Lett. 19(18), 17143-17150 (2011).
30 Peng Shao, Wei Shi, Ryan K. W. Chee, and Roger J. Zemp, “Mosaic acquisition and processing for optical-resolution photoacoustic microscopy,” Journal of Biomedical Optics 17(18), 080503-1 (2012).
31 M. Xu, and L. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction," Phyical Review E 67(5), 056605 (2003).
32 M. L. Li, Y. C. Tseng, and C. C. Cheng, "Model-based correction of finite aperture effect in photoacoustic tomography," Optics Express 18(25), 26285-26292 (2010).
33 Jin Young Kim, Changho Lee, Kyungjin Park, Geunbae Lim, & Chulhong Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Scientific Reports 5, 7932 (2015).
34 Bin Rao, Konstantin Maslov, Amos Danielli, Ruimin Chen, K. Kirk Shung, Qifa Zhou, and Lihong V. Wang, “Real-time four-dimensional optical-resolution photoacoustic microscopy with Au nanoparticle-assisted subdiffraction-limit resolution,” Opt. Lett. 36(7), 1137-1139 (2011).
35 Jianhua Chen, Riqiang Lin, Huina Wang,Jing Meng, Hairong Zheng and Liang Song, “Blind-deconvolution optical-resolution photoacoustic microscopy in vivo,” Optics Express 21(6), 7316-7327 (2013).
36 Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1-2007 (American National Standards Institute, Inc., 2007).
37 Vladimir P. Zharov, Ekaterina I. Galanzha, Evgeny V. Shashkov, Nicolai G. Khlebtsov and Valery V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett. 31(24), 3623-3625 (2006).
38 Yazan N. Billeh, Mengyang Liu, and Takashi Buma, “Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source,” Optics Express 18(18), 18519-18524 (2010).
39 Amy K. Loya, J. P. Dumas, and Takashi Buma, “Photoacoustic microscopy with a tunable source based on cascaded stimulated Raman scattering in a large-mode area photonic crystal fiber,” in Proceedings of IEEE Ultrasonics Symposium, 1208–1211, (2012).
40 Parsin Hajireza, Alexander Forbrich, and Roger Zemp, “In-vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source,” Biomedical Optics Express, 5(2), 539-546 (2014).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *