帳號:guest(18.221.107.62)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李昀霖
作者(外文):Lee, Yun Lin
論文名稱(中文):藉由全基因組跨物種間基因和表觀遺傳網路來研究人類巨噬細胞和樹突狀細胞感染結核分支桿菌的細胞機制
論文名稱(外文):Investigating the Genome-wide Genetic-and-epigenetic Interspecies Networks for Cellular Mechanisms in Human Macrophages and Dendritic Cells Both Infected with Mycobacterium tuberculosis
指導教授(中文):陳博現
指導教授(外文):Chen, Bor Sen
口試委員(中文):藍忠昱
王翊青
高茂傑
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061553
出版年(民國):105
畢業學年度:104
論文頁數:50
中文關鍵詞:結核病巨噬細胞樹突狀細胞結核分支桿菌感染藥物標靶
外文關鍵詞:tuberculosismacrophagedendritic cellmycobacterium tuberculosis infectiondrug target
相關次數:
  • 推薦推薦:0
  • 點閱點閱:765
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
結核病是由結核分支桿菌感染所造成的,並且結核分支桿菌是最古老的人類病原體之一且演化出複雜的策略來生存。肺在做氣體交換時是接觸到懸浮氣體中結核分支桿菌的第一個器官。因此,在肺部免疫系統的守衛像是巨噬細胞和樹突狀細胞是很重要的防護來反抗結核分支桿菌的感染。到目前為止,雖然已經有很多文章探討了巨噬細胞和樹突狀細胞在感染結核分支桿菌的功能,但是全基因組的路徑和網路還是不完整的。此外,巨噬細胞和樹突狀細胞的免疫反應還是不同的。所以,我們分析巨噬細胞和樹突狀細胞感染結核分支桿菌前期的全基因組基因和表觀遺傳網路(GWGEINs)來找出宿主和病原體在巨噬細胞和樹突狀細胞間不同的機制。
我們首先使用databases mining來建立巨噬細胞和樹突狀細胞candidate GWGEINs。接著我們使用人類巨噬細胞和樹突狀細胞感染結核分支桿菌H37Rv的microarray data 來刪減掉candidate GWGEINs中的假陽性連線。我們透過constrained least square方法使用基因調控網路和蛋白質交互作用模型來決定基因和蛋白質連線的能力,並且我們使用Akaike information criterion (AIC)來刪減掉candidate GWGEINs中不顯著的連線,最後建立出巨噬細胞和樹突狀細胞感染結核分支桿菌的GWGEINs。
建完GWGEINs後,使用principle network projection (PNP)方法來建立巨噬細胞和樹突狀細胞的宿主病原體間核心網路(HPCNs)。因此,我們可以研究宿主和病原體間潛在的機制還有找出病源體如何對抗巨噬細胞和樹突狀細胞在結核分支桿菌H37Rv早期感染時的攻擊機制。最後,因為Rv1675c在巨噬細胞的結核分支桿菌中扮演重要防禦的角色我們預測Rv1675c可以成為一個有潛力的藥物標靶。此外,結核分支桿菌膜上的蛋白Rv1438、Rv1098c、Rv0967、Rv0969、Rv0970、Rv0667、Rv1696和Rv2404c也可能成為有潛力的藥物標靶因為他們在兩個細胞型態的結核分支桿菌中的存活上有重要的角色,而且這些膜蛋白也很容易的可以被藥物標記。更進一步,多分子藥物包括Lopinavir、TMC207、ATSM和GTSM也被提出來作為治療結核分支桿菌的感染透過標記之前所敘述的有潛力的藥物標靶。
Tuberculosis is caused by the infection of Mycobacterium tuberculosis (Mtb), and Mtb is one of the oldest human pathogens and evolves complex strategies for survival. Lung is the first organ exposed to aerosol-transmitted Mtb during gaseous exchange. Therefore, the guards of the immune system in lung such as macrophages (Mϕs) and dendritic cells (DCs) are the most important defense against Mtb infection. To date, although there are several studies discussing the functions of Mϕs and DCs during Mtb infection, the genome-wide pathways and networks are still incomplete. Besides, the immune responses in Mϕs and DCs are also different. Thus, we analyzed the genome-wide genetic-and-epigenetic interspecies networks (GWGEINs) of Mϕs and DCs both infected with Mtb to find out the different mechanisms of both host and pathogen between Mϕs and DCs during early Mtb infection.
We first used databases mining to construct candidate GWGEINs of Mϕs and DCs. Then we used the two-sided microarray data from human Mϕs and DCs both infected with Mtb H37Rv to prune the false-positive edges in candidate GWGEINs due to big database mining. We used gene regulation models and protein-protein interaction (PPI) models of both host and pathogen to determine the association abilities of connective edges of genes and proteins by constrained least square method, and we deleted the false-positives by pruning the insignificant edges in the candidate GWGEINs out of system order (number of edges) determined by Akaike information criterion (AIC), constructing the GWGEINs in Mϕs and DCs both infected with Mtb.
After constructing GWGEINs, the principal network projection (PNP) method is employed to construct the host-pathogen core networks (HPCNs) in both Mϕs and DCs. Thus, we can investigate the underlying cross-talk mechanisms between host and pathogen and find out how the pathogen counteracts the offensive mechanisms by host in Mϕs and in DCs during Mtb H37Rv early infection. Finally, we predicted Rv1675c as a potential drug target because of its important defensive role of Mtb in Mϕs. Besides, the membrane proteins Rv1438, Rv1098c, Rv0967, Rv0969, Rv0970, Rv0667, Rv1696 and Rv2404c in Mtb might be also potential drug targets because of their important roles on the survival of Mtb in both cell types and their being easily targeted by drugs. Further, a dealing of multiple molecules drug including Lopinavir, TMC207, ATSM and GTSM is also suggested for potential therapeutic treatment of Mtb infection by targeting above potential drug targets.
摘要 i
Abstract iii
Contents iv
List of Tables v
List of Figures v
List of Supplemental materials v
Introduction 1
Materials and Methods 5
3.1 Overview the construction processes of GWGEINs in Mϕs and DCs both infected with Mtb 5
3.2 Big data mining and data preprocessing 5
3.3 Construction processes of candidate genome-wide genetic-and-epigenetic interspecies networks (GWGEINs) in Mϕs and DCs infected with Mtb 6
3.4 Dynamic model of GRNs and PPINs in candidate GWGEINs for Mϕs and DCs 7
3.5 Identification of the regulative and interactive parameters in candidate GWGEINs in Mϕs and DCs 9
3.6 Prune the false-positives in GRNs and PPINs of candidate GWGEINs 15
3.7 Core network construction by using principal network projection (PNP) method 17
Results and Discussion 20
3.1 The GWGEINs in Mϕs and DCs both infected with Mtb 20
3.2 The HPCNs in Mϕs and DCs both infected with Mtb 20
3.2.1 The biological processes of host core networks in both cell types 20
3.2.2 Host-pathogen cross-talk interactions in both cell types 21
3.2.3 Host responses in Mϕs and in DCs during Mtb infection 22
3.2.4 The protective mechanisms of Mtb in Mϕs and DCs 25
Overview the offensive and defensive mechanisms between host and pathogen and the dysfunctions of host in Mϕs and DCs 29
3.3 Drug targets, Drug mining and multiple molecules drug design 30
Conclusion 31
Reference 44
1. Vashishtha, V.M., WHO Global Tuberculosis Control Report 2009: Tuberculosis Elimination is a Distant Dream. Indian Pediatrics, 2009. 46(5): p. 401-402.
2. Dye, C., et al., Global burden of tuberculosis - Estimated incidence, prevalence, and mortality by country. Jama-Journal of the American Medical Association, 1999. 282(7): p. 677-686.
3. Vynnycky, E. and P.E. Fine, Lifetime risks, incubation period, and serial interval of tuberculosis. Am J Epidemiol, 2000. 152(3): p. 247-63.
4. Koch, R., The etiology of tuberculosis. Review of Infectious Diseases, 1982. 4(6): p. 1270-1274.
5. Andersen, P. and T.M. Doherty, The success and failure of BCG - implications for a novel tuberculosis vaccine. Nat Rev Microbiol, 2005. 3(8): p. 656-62.
6. Comstock, G.W., S.F. Woolpert, and V.T. Livesay, Tuberculosis studies in Muscogee County, Georgia. Twenty-year evaluation of a community trial of BCG vaccination. Public Health Rep, 1976. 91(3): p. 276-80.
7. Hart, P.D. and I. Sutherland, BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life. Br Med J, 1977. 2(6082): p. 293-5.
8. Sterne, J.A.C., L.C. Rodrigues, and I.N. Guedes, Does the efficacy of BCG decline with time since vaccination? International Journal of Tuberculosis and Lung Disease, 1998. 2(3): p. 200-207.
9. Alexander, P.E. and P. De, The emergence of extensively drug-resistant tuberculosis (TB): TB/HIV coinfection, multidrug-resistant TB and the resulting public health threat from extensively drug-resistant TB, globally and in Canada. Can J Infect Dis Med Microbiol, 2007. 18(5): p. 289-91.
10. Johnson, R., et al., Drug resistance in Mycobacterium tuberculosis. Curr Issues Mol Biol, 2006. 8(2): p. 97-111.
11. Zignol, M., et al., Surveillance of anti-tuberculosis drug resistance in the world: an updated analysis, 2007-2010. Bulletin of the World Health Organization, 2012. 90(2): p. 111-119.
12. Centers for Disease, C. and Prevention, Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs--worldwide, 2000-2004. MMWR Morb Mortal Wkly Rep, 2006. 55(11): p. 301-5.
13. Russell, D.G., et al., Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol, 2009. 10(9): p. 943-8.
14. Kaplan, G., et al., Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infection and Immunity, 2003. 71(12): p. 7099-7108.
15. Sallusto, F., et al., Dendritic Cells Use Macropinocytosis and the Mannose Receptor to Concentrate Macromolecules in the Major Histocompatibility Complex Class-Ii Compartment - down-Regulation by Cytokines and Bacterial Products. Journal of Experimental Medicine, 1995. 182(2): p. 389-400.
16. Geijtenbeek, T.B., et al., DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol, 2000. 1(4): p. 353-7.
17. Rescigno, M., F. Granucci, and P. Ricciardi-Castagnoli, Molecular events of bacterial-induced maturation of dendritic cells. J Clin Immunol, 2000. 20(3): p. 161-6.
18. Albert, M.L., et al., Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med, 1998. 188(7): p. 1359-68.
19. Visintin, A., et al., Regulation of Toll-like receptors in human monocytes and dendritic cells. J Immunol, 2001. 166(1): p. 249-55.
20. Lipscomb, M.F. and B.J. Masten, Dendritic cells: immune regulators in health and disease. Physiol Rev, 2002. 82(1): p. 97-130.
21. Kaufmann, S.H.E. and U.E. Schaible, A dangerous liaison between two major killers: Mycobacterium tuberculosis and HIV target dendritic cells through DC-SIGN. Journal of Experimental Medicine, 2003. 197(1): p. 1-5.
22. Means, T.K., et al., Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol, 1999. 163(7): p. 3920-7.
23. Chan, J., et al., Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med, 1992. 175(4): p. 1111-22.
24. Garcia, I., et al., Lethal Mycobacterium bovis Bacillus Calmette Guerin infection in nitric oxide synthase 2-deficient mice: cell-mediated immunity requires nitric oxide synthase 2. Lab Invest, 2000. 80(9): p. 1385-97.
25. Lin, P.L., et al., Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum, 2010. 62(2): p. 340-50.
26. Scanga, C.A., et al., Reactivation of latent tuberculosis: variations on the Cornell murine model. Infect Immun, 1999. 67(9): p. 4531-8.
27. Tsao, T.C., et al., Increased TNF-alpha, IL-1 beta and IL-6 levels in the bronchoalveolar lavage fluid with the upregulation of their mRNA in macrophages lavaged from patients with active pulmonary tuberculosis. Tuber Lung Dis, 1999. 79(5): p. 279-85.
28. Cooper, A.M., et al., Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. Journal of Experimental Medicine, 1997. 186(1): p. 39-45.
29. Flynn, J.L., et al., An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med, 1993. 178(6): p. 2249-54.
30. Noss, E.H., et al., Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J Immunol, 2001. 167(2): p. 910-8.
31. Sugawara, I., et al., Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol Immunol, 2003. 47(5): p. 327-36.
32. Pathak, S.K., et al., Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nature Immunology, 2007. 8(6): p. 610-618.
33. van Kooyk, Y. and T.B. Geijtenbeek, DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol, 2003. 3(9): p. 697-709.
34. Redford, P.S., P.J. Murray, and A. O'Garra, The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol, 2011. 4(3): p. 261-70.
35. Sturgill-Koszycki, S., et al., Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science, 1994. 263(5147): p. 678-81.
36. Sakamoto, K., The pathology of Mycobacterium tuberculosis infection. Vet Pathol, 2012. 49(3): p. 423-39.
37. Tailleux, L., et al., Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. PLoS One, 2008. 3(1): p. e1403.
38. Agarwal, V., et al., Predicting effective microRNA target sites in mammalian mRNAs. Elife, 2015. 4.
39. Subramanian, A., et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(43): p. 15545-15550.
40. Mootha, V.K., et al., PGC-1 alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 2003. 34(3): p. 267-273.
41. Bovolenta, L.A., M.L. Acencio, and N. Lemke, HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics, 2012. 13: p. 405.
42. Zheng, G., et al., ITFP: an integrated platform of mammalian transcription factors. Bioinformatics, 2008. 24(20): p. 2416-7.
43. Stark, C., et al., BioGRID: a general repository for interaction datasets. Nucleic Acids Res, 2006. 34(Database issue): p. D535-9.
44. Jaini, S., et al., Transcription Factor Binding Site Mapping Using ChIP-Seq. 2014.
45. Galagan, J., A. Lyubetskaya, and A. Gomes, ChIP-Seq and the complexity of bacterial transcriptional regulation. Curr Top Microbiol Immunol, 2013. 363: p. 43-68.
46. Galagan, J.E., et al., The Mycobacterium tuberculosis regulatory network and hypoxia. Nature, 2013. 499(7457): p. 178-83.
47. Minch, K.J., et al., The DNA-binding network of Mycobacterium tuberculosis. Nature Communications, 2015. 6.
48. Guo, W., et al., Candidate Mycobacterium tuberculosis genes targeted by human microRNAs. Protein Cell, 2010. 1(5): p. 419-21.
49. Szklarczyk, D., et al., STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res, 2015. 43(Database issue): p. D447-52.
50. Wang, Y., et al., Global protein-protein interaction network in the human pathogen Mycobacterium tuberculosis H37Rv. J Proteome Res, 2010. 9(12): p. 6665-77.
51. Zhou, H., et al., Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions. Biol Direct, 2014. 9: p. 5.
52. Davis, F.P., et al., Host pathogen protein interactions predicted by comparative modeling. Protein Sci, 2007. 16(12): p. 2585-96.
53. Johansson, R., System modeling and identification. Prentice-Hall information and system sciences series. 1993, Englewood Cliffs, NJ: Prentice Hall. xiii, 512 p.
54. Peters, J.-M., J.R. Harris, and D. Finley, Ubiquitin and the biology of the cell. 1998, New York: Plenum Press. xx, 472 p.
55. Stanley, S.A., et al., Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth.
56. Rihawi, A., et al., A case of tuberculosis and adenocarcinoma coexisting in the same lung lobe. International Journal of Mycobacteriology, 2015.
57. Griffin, J.E., et al., High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog, 2011. 7(9): p. e1002251.
58. Roger, T., et al., Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection. Blood, 2011. 117(4): p. 1205-17.
59. Romero, M.M., et al., Outbreaks of Mycobacterium tuberculosis MDR strains differentially induce neutrophil respiratory burst involving lipid rafts, p38 MAPK and Syk. BMC Infect Dis, 2014. 14: p. 262.
60. Wong, K.K., et al., ETS-1 Regulates Twist-1 Expression In Non-Small Cell Lung Cancer (NSCLC) Progression And Metastasis. American Journal of Respiratory and Critical Care Medicine, 2011. 183.
61. Young, M.R., et al., Regulation of Lewis lung carcinoma invasion and metastasis by protein kinase A. Int J Cancer, 1995. 61(1): p. 104-9.
62. Montero, A.J., et al., Epigenetic inactivation of EGFR by CpG island hypermethylation in cancer. Cancer Biol Ther, 2006. 5(11): p. 1494-501.
63. Gu, H., et al., Mitochondrial E3 ligase March5 maintains stemness of mouse ES cells via suppression of ERK signalling. Nat Commun, 2015. 6: p. 7112.
64. Ren, J., et al., Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis. J Biol Chem, 2010. 285(17): p. 12695-705.
65. Buckley, S.M., et al., Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system. Cell Stem Cell, 2012. 11(6): p. 783-98.
66. Lelouard, H., et al., Transient aggregation of ubiquitinated proteins during dendritic cell maturation. Nature, 2002. 417(6885): p. 177-82.
67. Canadien, V., et al., Cutting edge: microbial products elicit formation of dendritic cell aggresome-like induced structures in macrophages. J Immunol, 2005. 174(5): p. 2471-5.
68. Kumar, S. and L. Jena, Understanding Rifampicin Resistance in Tuberculosis through a Computational Approach. Genomics Inform, 2014. 12(4): p. 276-82.
69. Kapur, V., et al., Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J Clin Microbiol, 1994. 32(4): p. 1095-8.
70. Rohde, K.H., et al., Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathog, 2012. 8(6): p. e1002769.
71. Connor, S.E., et al., Structural and functional characterization of Mycobacterium tuberculosis triosephosphate isomerase. Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 12): p. 1017-22.
72. Kuhn, M.L., et al., Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation. PLoS One, 2014. 9(4): p. e94816.
73. Piddington, D.L., et al., Cu,Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun, 2001. 69(8): p. 4980-7.
74. Wagner, D., et al., Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell's endosomal system. J Immunol, 2005. 174(3): p. 1491-500.
75. Wolschendorf, F., et al., Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(4): p. 1621-1626.
76. Ward, S.K., E.A. Hoye, and A.M. Talaat, The global responses of Mycobacterium tuberculosis to physiological levels of copper. J Bacteriol, 2008. 190(8): p. 2939-46.
77. Balazsi, G., et al., The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol Syst Biol, 2008. 4: p. 225.
78. Leistikow, R.L., et al., The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol, 2010. 192(6): p. 1662-70.
79. Voskuil, M.I., et al., Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med, 2003. 198(5): p. 705-13.
80. Campbell, D.R., et al., Mycobacterial cells have dual nickel-cobalt sensors - Sequence relationships and metal sites of metal-responsive repressors are not congruent. Journal of Biological Chemistry, 2007. 282(44): p. 32298-32310.
81. Li, J., et al., Crystallization and preliminary X-ray analysis of Rv1674c from Mycobacterium tuberculosis. Acta Crystallogr F Struct Biol Commun, 2015. 71(Pt 3): p. 354-7.
82. Koul, A., et al., Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis. J Bacteriol, 2000. 182(19): p. 5425-32.
83. Ecco, G., et al., Mycobacterium tuberculosis tyrosine phosphatase A (PtpA) activity is modulated by S-nitrosylation. Chem Commun (Camb), 2010. 46(40): p. 7501-3.
84. Choi, K.P., N. Kendrick, and L. Daniels, Demonstration that fbiC is required by Mycobacterium bovis BCG for coenzyme F-420 and FO biosynthesis. Journal of Bacteriology, 2002. 184(9): p. 2420-+.
85. Purwantini, E., T.P. Gillis, and L. Daniels, Presence of F420-dependent glucose-6-phosphate dehydrogenase in Mycobacterium and Nocardia species, but absence from Streptomyces and Corynebacterium species and methanogenic Archaea. FEMS Microbiol Lett, 1997. 146(1): p. 129-34.
86. Purwantini, E. and B. Mukhopadhyay, Conversion of NO2 to NO by reduced coenzyme F-420 protects mycobacteria from nitrosative damage. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(15): p. 6333-6338.
87. McCue, L.A., K.A. McDonough, and C.E. Lawrence, Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis. Genome Res, 2000. 10(2): p. 204-19.
88. McDonough, K.A. and A. Rodriguez, The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat Rev Microbiol, 2012. 10(1): p. 27-38.
89. Agarwal, N., et al., Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature, 2009. 460(7251): p. 98-102.
90. Ranganathan, S., et al., Characterization of a cAMP responsive transcription factor, Cmr (Rv1675c), in TB complex mycobacteria reveals overlap with the DosR (DevR) dormancy regulon. Nucleic Acids Res, 2015.
91. Gupta, D., et al., Suppression of TLR2-induced IL-12, reactive oxygen species, and inducible nitric oxide synthase expression by Mycobacterium tuberculosis antigens expressed inside macrophages during the course of infection. J Immunol, 2010. 184(10): p. 5444-55.
92. Kinnings, S.L., et al., The Mycobacterium tuberculosis drugome and its polypharmacological implications. PLoS Comput Biol, 2010. 6(11): p. e1000976.
93. Novoa-Aponte, L. and C.Y. Soto Ospina, Mycobacterium tuberculosis P-type ATPases: possible targets for drug or vaccine development. Biomed Res Int, 2014. 2014: p. 296986.
94. Andries, K., et al., A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005. 307(5707): p. 223-7.
95. Speer, A., et al., Copper-boosting compounds: a novel concept for antimycobacterial drug discovery. Antimicrob Agents Chemother, 2013. 57(2): p. 1089-91.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *