帳號:guest(3.17.179.193)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林柏華
作者(外文):Bo-Hua Lin
論文名稱(中文):適用於快閃記憶體的QC-LDPC編碼調變
論文名稱(外文):Application of LDPC Coded Modulation to NAND Flash
指導教授(中文):翁詠祿
指導教授(外文):Yeong-Luh Ueng
口試委員(中文):王忠炫
李晃昌
口試委員(外文):Chung-Hsuan Wang
Huang-Chang Lee
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061527
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:58
中文關鍵詞:錯誤更正碼
外文關鍵詞:LDPC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1053
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本論文中,針對QC-LDPC編碼調變設計了一整套地建碼流程。首先,提出了能應用在QC-LDPC的密度演化,它能區分出相對應調變符元中不同位元的機率分布,且能在QC-LDPC碼的迭代過程中計算出機率分布的變化。傳統的密度演化只能在BPSK訊號中計算出解碼的臨界值,而QC-LDPC的密度演化可以進一步用來推估更高階層的迭代式編碼調變的解碼臨界值,及碼內結構對解碼臨界值所造成不同的影響。接著,為了要降低錯誤平層,需要利用交錯器來降低錯誤平層。對於non-Gray的迭代式編碼調變,需要利用交錯器來設法將陷入同一個短環內的變異節點分散到不同的符元中,然而在QC-LDPC碼中,我們可以利用基礎矩陣的位移指標,將矩陣中的短環找出,且將陷入短環的變異節點分散到不同的符元。因此,我們可以不必要透過交錯器而僅僅靠著基礎矩陣中的簡單地行轉換,一樣能達到降低錯誤平層的效果。我們針對適用再TLC快閃記憶體且碼長為18396,碼率是0.94的QC-LDPC迭代式編碼調變(8PAM)提出了一整套的設計流程。當使用最佳的 non-Gray mapping ,能以著較低的平均維分布而與gray mapping達到相似的性能,最後模擬也顯示,QC-LDPC編碼調變根據整套地設計流程能達到與預期一樣好的解碼臨界值與低錯誤平層,也能大幅降低解碼的複雜度。
In this theses, a design flow for coded modulation that integrates quasi-cyclic low-density parity check (QC-LDPC) codes and iterative detection and decoding (IDD) is proposed. The first major technique in this work is a modified QC-LDPC based density evolution(QCDE). It can indicate the difference between the probability distribution of bits corresponding to individual modulation level of the received symbols, and evaluate the changing of the probability distribution following the structure of the QC-LDPC codes. Comparing the conventional density evolution that can only detect the decoding threshold for BPSK signal, the modified QCDE can evaluate the decoding and detection threshold for IDD receiver with high order modulation, and the effect of the code structure can also be observed.
The second major technique is QC-LDPC-based interleaving scheme for error floor lowering. For coded modulation with non-Gray mapping and IDD, an interleaver is required in order to distribute the variable nodes in a single short cycles of QC-LDPC codes into different symbols, or high error floor will be introduced. Take the advantage of the structure of QC-LDPC code, the variable nodes in a single short cycles can be observed via the based matrix and the shift indices, and are mapped into different symbols. Therefore, the interleaver can be removed after a simple column change in the base matrix is applied.
The proposed design flow is applied to the construction of the coded modulation combining a length-18396 rate-0.94 QC-LDPC code and the 8-PAM modulation, which is suitable for TLC (triple-level cell) flash memory. Refer to the binary switching algorithm, an optimized non-Gray mapping is selected, then a similar performance can be achieved using a QC-LDPC code with a much smaller degree distribution comparing to that combing the Gray mapping. It shows that, except the low decoding/detection threshold and low error floor, the coded modulation designed using the proposed design flow also has a much low decoding complexity.
1 簡介................................................ 1
2 回顧................................................ 4
2.1基於有限域之準循環低密度奇偶檢查碼建構方法的介紹及遮蔽矩陣的簡介. . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1基於有限域之準循環低密度奇偶檢查碼建構方法的介紹....... 4
2.1.2 遮蔽矩陣簡介 . . . . . . . . . . . . . . . . . ...8
2.2 環(Cycle) 和錯誤平層(Error Floor)現象以及陷阱集(Trapping Set)的介紹 . . . . . . . . . . . . . . . . . . . . 10
2.2.1 環的介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 錯誤平層現象 . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 陷阱集的介紹 . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 多階儲存單元快閃記憶體的簡介 . . . . . . . . . . . . . . . . . . 12

2.3.1 PAM 高斯模型‹ . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 非均勻的量化 . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 固定比例的方法來決定判讀電壓. . . . . . . . . . . . . . 14
2.4 LDPC 編碼調變. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
v
2.4.1 非迭代式低密度奇偶檢查碼編碼調變Š . . . . . . . . . . . 16
2.4.2 迭代式低密度奇偶檢查碼編碼調變. . . . . . . . . . . . . 17
3 密度演化運用在 LDPC 編碼調變..............Š 18
3.1 密度演化 (Density Evolution) . . . . . . . . . . . . . . . . . . . . 18
3.1.1 非記憶對稱性通道的密度演化. . . . . . . . . . . . . . . 18
3.1.2 非記憶非對稱性通道的密度演化 . . . . . . . . . . . . . . 21
3.1.3 量化的密度演化. . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 適用於LDPC編碼調變的密度演化 . . . . . . . . . . . . . . . . . 23
3.2.1 使用的通道模型. . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 迭代中的解碼器與解調器的密度演化 . . . . . . . . . . . 24
3.3 適用於QC-LDPC編碼調變的密度演化. . . . . . . . . . . . . . . 26
3.3.1 QC-LDPC的密度演化. . . . . . . . . . . . . . . . . . . . 26
3.3.2 QC-LDPC的密度演化應用在編碼調變上的動機及作法.......27
4 擁有良好解碼臨界值及低錯誤平層之LDPC編碼調變應用....... 35
4.1 如何找尋QC-LDPC碼之最佳的解碼臨界值. . . . . . . . . . . . 35
4.2 設計搭配不同的標籤來降低錯誤平層 . . . . . . . . . . . . . . . . 36
4.2.1 來回迭代地解調與解碼來降低錯誤平層. . . . . . . . . . 36
4.2.2 針對低錯誤平層的標籤準則. . . . . . . . . . . . . . . . . 38
4.3 處理大量維度二的變異節點 . . . . . . . . . . . . . . . . . . . . . 39
4.3.1利用交錯器來改善. . . . . . . . . . . . . . . . . . . . . . 39
4.3.2 利用簡單行轉換來改善 . . . . . . . . . . . . . . . . . . . . 40
4.4 模擬結果œ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 總結...................... 54
Bibliography................. 55
[1] Blahut, Richard E. \Algebraic codes for data transmission." Cambridge
university press, 2003.
[2] J. Yang, \Novel ECC architecture enhances storage system reliability, in
Proc. of Flash Memory Summit, Aug. 2012.
[3] X. Hu, \LDPC codes for
ash channel, in Proc. of Flash Memory Summit,
Aug. 2012.
[4] E. Yeo, \An LDPC-enabled
ash controller in 40nm CMOS, in Proc. of
Flash Memory Summit, Aug. 2012.
[5] Wang, Jiadong, et al. \LDPC Decoding with Limited-Precision Soft Information
in Flash Memories." arXiv preprint arXiv:1210.0149 (2012).
[6] Jieng-Heng Shy, "LDPC Coded Modulation and Its Applications to MLC
Flash Memory," National Tsinghua University Master Th 2014
[7] ten Brink, Stephan, Gerhard Kramer, and Alexei Ashikhmin. \Design of
low-density parity-check codes for modulation and detection." Communications,
IEEE Transactions on 52.4 (2004): 670-678.
[8] Richardson, Thomas J., and Rdiger L. Urbanke. \The capacity of lowdensity
parity-check codes under message-passing decoding." Information
Theory, IEEE Transactions on 47.2 (2001): 599-618. APA
[9] MacKay, David JC, and Michael S. Postol. \Weaknesses of Margulis and
Ramanujan-Margulis low-density parity-check codes." Electronic Notes in
Theoretical Computer Science 74 (2003): 97-104.
[10] Wang, C-C., Sanjeev R. Kulkarni, and H. Vincent Poor. \Density evolution
for asymmetric memoryless channels." Information Theory, IEEE
Transactions on 51.12 (2005): 4216-4236. APA
[11] Fabian Steiner, Georg Bocherer,Gianluigi Liva "Protograph-Based LDPC
Code Design for Bit-Metric Decoding"Information Theory (ISIT), 2015
IEEE International Symposium on
[12] William Ryan and Shu Lin, "Constructions of LDPC Codes Based on
Finite Filelds, "Channel Codes : Classical and Modern, Chapter 11, pp.484-
495.
[13] Jun Xu, Lei Chen, Ivana Djurdjevic, Shu Lin and Khaled Abdel-Gha ar,
"Construction of Regular and Irregular LDPC Codes: Geometry Decomposittion
and Masking," IEEE Transations on Information Theory,
VOL.53, No. 1, JANUARY 2007.
[14] Marc P. C. Fossorier, Senior Member, IEEE, "Quasi-Cyclic Low-Density
Parity-Check Codes From Circulant Permutation Matrices",IEEE TRANSACTIONS
ON INFORMATION THEORY, VOL. 50, NO. 8, AUGUST
2004
[15] Richardson, Tom. \Error
oors of LDPC codes." Proceedings of the annual
Allerton conference on communication control and computing. Vol.
41. No. 3. The University; 1998, 2003.
[16] Qiuju Diao, Ying Yu Tsai, Shu Lin, and Khaled Abdel-Gha ar, "LDPC
Codes on Partial Geometries: Construction, Trapping Set Structure, and
Puncturing," IEEE Transactions on information Theory, VOL. 59 ,NO. 12,
DECEMBER 2013
[17] Dong, Guiqiang, Ningde Xie, and Tong Zhang. \On the use of soft-decision
error-correction codes in NAND
ash memory." Circuits and Systems I:
Regular Papers, IEEE Transactions on 58.2 (2011): 429-439.
[18] Gallager, Robert. \Low-density parity-check codes." Information Theory,
IRE Transactions on 8.1 (1962): 21-28.
[19] MacKay, David JC. \Good error-correcting codes based on very sparse
matrices." Information Theory, IEEE Transactions on 45.2 (1999): 399-
431.
[20] Chung, Sae-Young, et al. \On the design of low-density parity-check codes
within 0.0045 dB of the Shannon limit." Communications Letters, IEEE
5.2 (2001): 58-60.
[21] Schreckenbach, Frank, et al. \Optimization of symbol mappings for bitinterleaved
coded modulation with iterative decoding." Communications
Letters, IEEE 7.12 (2003): 593-595.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *