帳號:guest(3.15.22.24)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃心寧
作者(外文):Huang, Hsin Ning
論文名稱(中文):無橋切換式整流器供電開關式磁阻馬達驅動系統之開發及增能控制
論文名稱(外文):DEVELOPMENT OF A BRIDGELESS SMR-FED SRM DRIVE AND ITS DRIVING PERFORMANCE ENHANCEMENT CONTROL
指導教授(中文):鐘太郎
廖聰明
指導教授(外文):Jong, Tai Lang
Liaw, Chang Ming
口試委員(中文):龔應時
劉添華
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061521
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:128
中文關鍵詞:切換式磁阻馬達切換式整流器功因校正換相調整直流鏈電流漣波電流控制速度控制電壓控制
外文關鍵詞:SRMSMRPFCcommutation tuningDC-link current ripplecurrent controlspeed controlvoltage contro
相關次數:
  • 推薦推薦:0
  • 點閱點閱:498
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
本論文旨在研製一單相無橋切換式整流器供電之切換式磁阻馬達驅動系統,並從事其增能控制與效能實測評定。首先建構一具合宜電流與速度控制之三相切換式磁阻馬達驅動系統,所提之電流控制機構之迴授控制器,輔以一反電動勢前饋控制器。另外提出一基於線圈電流之動態換相移位控制器,以自動降低反電動勢之效應。於具有良好電流追控性能後,透過妥善之速度控制器設計,獲得良好之驅動系統速度控制性能。
於較高速及較重載下,以換相移位降低反電動勢效應之功效漸有限制,只能改採直流鏈升壓策略。為達此目的,本論文建構一單相無橋切換式整流器,並用以建立後接切換式磁阻馬達驅動系統之可升與調節良好之直流鏈電壓。相較於傳統切換式整流器電路,所採無橋式電路具較高之轉換效率。在控制器方面,比例-積分迴授控制器輔以強健控制器,提升電流及電壓之動態響應特性。
最後,本文實測觀察換相移位對切換式磁阻馬達驅動系統直流鏈電流漣波及馬達振動之影響,並據以提出一基於直流鏈電流之動態換相移位控制器,以自動達到直流鏈電流漣波之最小化。所提控制器策略之有效性將以一些實驗結果驗證之。
This thesis is mainly concerned with the development of a switched-reluctance motor (SRM) drive powered from utility grid via a single-phase bridgeless switch-mode rectifier (SMR) frond-end. And some performance enhancement control approaches are proposed and evaluated experimentally. First, a three-phase SRM drive with suited current and speed controls is designed and implemented. For the developed current control scheme, the current feedback controller (CFBC) is augmented with an observed back electromotive force (EMF) current feedforward controller (CFFC). Moreover, a dynamic commutation shift controller (DCSC) using sensed winding current is proposed to further counteract the back-EMF effects automatically. Having well-designed current control loop, good speed control performance is achieved by the designed control scheme.
Under higher speeds and/or heavier loads, the effectiveness of commutation advanced shift is limited, and DC-link voltage boosting becomes the sole means. To achieve this goal, a single-phase bridgeless boost SMR is then developed to establish the boostable and well-regulated DC-link voltage for the followed SRM drive. Compared to the traditional boost SMR, the bridgeless schematic leads to the increased efficiency. As to the proposed control scheme, the proportional-plus-integral (PI) feedback controllers are augmented with simple robust cancellation controllers to enhance the current and voltage control dynamic responses.
Finally, the effects of commutation on the DC-link current ripple and the stator vibration characteristics are explored experimentally. Then accordingly, a DCSC based on sensed DC-link current is devised for achieving the DC-link current ripple minimization automatically. The effectiveness of the developed control approach is verified by some measured results.
摘要 ……………………………………………………………………………….
致謝 …..………………….....……………………………………………………..
目錄 ……………………………………………………………………………….
第一章、簡介 …..……………….………………………………………………….
第二章、切換式磁阻馬達驅動系統簡介 .………………………………………...
第三章、切換式磁阻馬達驅動系統之建構 ……………………………………….
第四章、單相無橋切換式整流器之切換式磁阻馬達驅動系統 ……………….
第五章、基於直流鏈電流之動態換相移位控制機構…………………………….
第六章、結論 ……………………………………………………………………….
附錄:英文論文 …………………………………………………………………….
REFERENCES
A. SRM Basics
[1] T. J. E. Miller, Switched reluctance motors and their Control, Oxford, Clarendon Press, 1993.
[2] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
[3] P. C. Sen, Principles of electric machines and power electronics, 2nd ed., New Jersey: John Wiley & Sons, Inc., 1997.
[4] H. H. Moghbelli and M. H. Rashid, “Performance review of the switched reluctance motor drives,” in Proc. IEEE SCAS, 1991, vol. 1, pp. 162-165.
[5] A. Chiba, M. Takeno, N. Hoshi, M. Takemoto, S. Ogasawara and M. A. Rahman, “Consideration of number of series turns in switched-reluctance traction motor competitive to HEV IPMSM,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2333-2340, 2012.
[6] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
[7] K. Kiyota, T. Kakishima, H. Sugimoto and A. Chiba, “Comparison of the test result and 3D-FEM analysis at the knee point of a 60 kW SRM for a HEV,” IEEE Trans. Magn., vol. 49, no. 5, pp. 2291-2294, 2013.
[8] P. Andrada, B. Blanqué, E. Martínez and M. Torrent, “A novel type of hybrid reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 469-476, 2014.
[9] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion system: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
[10] M. Takeno, A. Chiba, N. Hoshi, S. Ogasawara, M. Takemoto and M. A. Rahman, “Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 48, no. 4, pp.1327-1334, 2012.

[11] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV: design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp.111-121, 2000.
[12] A. Chiba, K. Kiyota, N. Hoshi, M. Takemoto and S. Ogasawara, “ Development of a rare-earth-free SR motor with high torque density for hybrid vehicles,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 175-182, 2015.
[13] D. Lu and N. C. Kar, “Neural network based torque control of switched reluctance motor for hybrid electric vehicle propulsion at high speeds,” in Proc. IEEE EPEC, 2009, pp. 1-6.
[14] M. Cacciato, A. Consoli, G. Scarcella and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. PESC, 2008, June, pp. 1235-1241.
[15] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, 2012.
[16] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1079-1087, 1995.
[17] H. Y. Yang, Y. C. Lim and H. C. Kim, “Acoustic noise/vibration reduction of a single-phase SRM using skewed stator and rotor,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4292-4300, 2013.
B. SRM Converters
[18] J. W. Ahn, J. Liang, and D. H. Lee, “Classification and analysis of switched reluctance converters,” JEET, vol. 5, pp. 571-579, Nov 2010.S.
[19] FCAS20DN60BB smart power module for SRM, www.fairchildsemi.com/ds/ FC/FCAS20DN60BB.pdf.
[20] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
[21] S. Sindhuja and D. Susitra, “Design of a novel high grade converter for switched reluctance motor drive using component sharing,” in Proc. IEEE ICEETS, 2013, pp. 1174-1178.

[22] J. H. Choi, T. H. Kim, Y.S. K, S. B. Lim, S. J. Lee, Y. H. Kim and J. Lee, “The finite element analysis of switched reluctance motor considering asymmetric bridge converter and DC link voltage ripple,” IEEE Trans. Magn., vol. 41, no. 5, pp. 1640-1643, 2005.
[23] H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008.
[24] S. Gairola, Priti and L. N. Paliwal, “A new power converter for SRM drive,” in Proc. IEEE ICPCES, 2010, pp. 1-6.
[25] H. C. Chang and C. M. Liaw, “Development of a front-end converter for switched-reluctance motor drive,” in Proc. IEEE ICEMS, 2007, pp. 414-419.
[26] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” in Proc. IEEE Elect. Power Appl., 1993, vol. 140, no. 5, pp. 316-322.
[27] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IET Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[28] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[29] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
C. Model and Equivalent Circuits
[30] B. Fahimi, G. Suresh, J. Mahdavi and M. Ehsani, “A new approach to model switched reluctance motor drive application to dynamic performance prediction, control and design,” in Proc. PESC, 1998, vol. 2, pp. 2097-2102.
[31] M. Ayaz and A. B. Yildiz, “Control of switched reluctance motor containing a linear model,” in Proc. IEEE MED, 2006, pp. 1-6.
[32] M. Ayaz and A. B. Yildiz, “An equivalent circuit model for switched reluctance motor,” in Proc. IEEE MELCON, 2006, pp. 1182-1185.

[33] C. Lin, W. Wang, M. McDonough, and B. Fahimi, “An extended field reconstruction method for modeling of switched reluctance machines,” IEEE Trans. Magn., vol. 48, no. 2, pp. 1051-1054, 2012.
[34] W. Ding, L. Liu, J. Lou, and Y. Liu, “Comparative studies on mutually coupled dual-channel switched reluctance machines with different winding connections,” IEEE Trans. Magn., vol. 49, no. 11, pp. 5574-5589, 2013.
[35] F. L. M. dos Santos, J. Anthonis, F. Naclerio, J. J. C. Gyselinck, H. Van der Auweraer and L. C. S. Góes, “Multiphysics NVH modeling: simulation of a switched reluctance motor for an electric vehicle,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 469-476, 2014.
[36] V. Valdivia, R. Todd, F. J. Bryan, A. Barrado, A. Lázaro and A. J. Forsyth, “Behavioral modeling of a switched reluctance generator for aircraft power systems,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2690-2699, 2014.
[37] M. K. Kumar1 and G. R. K. Murthy, “Modeling and simulation of 8/6 pole switched reluctance motor with closed loop speed control,” in Proc. IEEE PrimeAsia, 2013, pp. 89-95.
[38] Y. T. Chang, C. K. Eric, “A simulation model for a 4 phase switched reluctance motor for PSIM,” in Proc. 4th Int. Conf. PESA, 2011, pp. 1–5.
[39] O. Ichinokura, T. Onda, M. Kimura, T. Watanabe, T. Yanada and H. J. Guo, “Analysis of dynamic characteristics of switched reluctance motor based on SPICE,” IEEE Trans. Magn., vol. 34, no. 4, pp. 2147-2149, 1998.
[40] A.Siadatan, V.Najmi and E.Afjei, “Modeling, simulation and analysis of A novel two layer 8/6 hybrid switched reluctance motor/field-assisted generator,” in Proc. IEEE ICEE, 2012, pp. 495-500.
[41] K. I. Hwu, Development of a switched reluctance motor drive, Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2001.
D. Current Control of SRM
[42] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.

[43] R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Proc. Elect. Power Appl., vol. 3, no. 5, pp. 453-460, 2009.
[44] P. Srinivas and P. V. N. Prasad, “Voltage control and hysteresis current control of a 8/6 switched reluctance motor,” in Proc. ICEMS, 2007, pp. 1557-1562.
[45] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009.
[46] G. Gallegos-Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines” in Proc. IEEE IAS, 2002, vol. 2, pp. 1212-1218.
[47] Z. Ruiwei, Q. Xisen, J. Liping, Z. Yingchao, Z. Tianwen and N. Jintong, “ An adaptive sliding mode current control for switched reluctance motor,” in Proc. IEEE ITEC-AP, 2014, pp. 1-6.
[48] S. K. Sahoo, S. K. Panda and J. X. Xu, “Iterative learning-based high-performance current controller for switched reluctance motors,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 491-498, 2004.
[49] I. Manolas, G. Papafotiou and S. N. Manias, “Sliding mode PWM for effective current control in switched reluctance machine drives,” in Proc. IEEE IPEC, 2014, pp. 1606-1612.
[50] H. Makino, T. Kosaka and N. Matsui, “ Control performance comparisons among three types of instantaneous current profiling technique for SR motor,” IET Proc. PEMD., pp. 1-6, 2014.
[51] S. K. Sahoo, S. Dasgupta, S. K. Panda and J. X. Xu, “A Lyapunov function-based robust direct torque controller for a switched reluctance motor drive system,” IEEE Trans. Power Electron., vol. 27, vol. 2, pp. 555-564, 2012.
E. Speed Control
[52] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 345-353, 2001.
[53] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive Using variable structure approach,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp.800-808, 1997.
[54] G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy” in Proc. IEEE IAS, 1995, vol. 1, pp. 263-270.
[55] S. Rafael, A.J. Pires, P.J. C. Branco, “An adaptive learning rate approach for an online neuro-fuzzy speed controller applied to a switched reluctance machine,” in Proc. IEEE ISIE, 2005, vol. 3, pp. 941-944.
[56] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
[57] L.L.N. d. Reis, F. Sobreira, A.R.R. Coelhoa, O.M. Almeida, J.C.T. Campos and S. Daher, “Identification and adaptive speed control for switched reluctance motor using DSP,” in Proc. IEEE COBEP, 2009, pp. 836-841.
F. Torque Ripple Reduction
[58] E. Bizkevelci, K. Leblebicioglu and H. B. Ertan, “A sliding mode controller to minimize SRM torque ripple and noise,” in Proc. IEEE ISIE, 2004, vol. 2, pp. 1333-1338.
[59] S. K. Sahoo, S. K. Panda and J. X. Xu, “Indirect torque control of switched reluctance motors using iterative learning control,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 200-208, 2005.
[60] S. K. Sahoo, S. K. Panda and J. X. Xu, “Direct torque controller for switched reluctance motor drive using sliding mode control,” in Proc. PEDS, 2005, vol. 2, pp. 1129-1134.
[61] A. D. Cheok and Y. Fukuda, “A new torque and flux control method for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 17, no. 4, pp. 543-557, 2002.
[62] J. Y. Chai, Y. W. Lin and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elect. Power Applicat., vol. 153, no. 3, pp. 348-360, 2006.
[63] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling” IEE Proc. Elect. Power Applicat., vol. 4, no. 5, pp. 380-396, 2010.

G. Commutation Instant Tuning
[64] X. D. Xue, J. K. Lin, Z. Zhang, T. W. Ng, K. F. Luk, K. W. E. Cheng and N. C. Cheung, “Study of motoring operation of in-wheel switched reluctance motor drives for electric vehicles,” in Proc. 3rd Int. Conf. PESA, 2009, pp. 1–6.
[65] H. M. Cheshmehbeigi, S. Yari, A. R. Yari and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched- reluctance motor drives using fuzzy adaptive controller,” in Proc. EPE’09, Sep. 2009, pp.1-10.
[66] Y. Sozer and D.A. Torrey, “Optimal turn-off angle control in the face of automatic turn-on angle control for switched-reluctance motors,” in Proc. IET EPA, 2007, vol. 1, pp. 395-401.
[67] M. N. F. Nashed, K. Ohyama, K. Aso, H. Fujii and H. Uehara, “Automatic turn-off angle control for high speed SRM drive,” in Proc. IEEE ISIE, 2006, vol. 3, pp. 2152-2157.
[68] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[69] S. A. Fatemi, H. M. Cheshmehbeigi and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
H. Switch-Mode Rectifiers
[70] W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE SECON, 1998, pp. 348-353.
[71] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, vol. 3, pp. 749-755, 2003.
[72] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC–DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[73] T. G. Amaral, V. F. Pires, M. Crisostomo and J. F. Silva, “Adaptive fuzzy control of a single-phase sinusoidal rectifier with step-up/down Characteristics,” in Proc. IEEE ICIT, 2000, pp. 147-152.
[74] M. Dawande and G. K. Dubey, “Bang–bang current control with predecided switching frequency for switch-mode rectifiers,” IEEE Trans. Ind. Electron., vol. 46, no. 1, pp. 61-66, 1999.
[75] S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1417-1425, 2004.
[76] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust ripple compensation and current waveform controls,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 560-566, 2004.
[77] M. Sippola, “Output voltage ripple reduction of a high power factor mode operated isolated charge-pump AC/DC converter,” in Proc. IEEE PTC, 2003, pp. 1-4.
[78] W. Y. Choi, J. M. Kwon, E. H. Kim, J. J. Lee, and B. H. Kwon, “ Bridgeless boost rectifier with low conduction losses and reduced diode reverse-recovery problems,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 769-780, 2007.
[79] C. Petrea and M. Lucanu, “Bridgeless power factor correction converter working at high load variations,” in Proc. ISSCS, 2007, vol. 2, pp. 1–4.
[80] S. H. Li and C. M. Liaw, “Modelling and quantitative direct digital control for a DSP-based soft-switching-mode rectifier,” IEE Proceedings, Electric Power Applications, vol. 150, no. 1, pp. 21-30, 2003
[81] C. M. Liaw and T. H. Chen, “A soft-switching mode rectifier with power factor correction and high frequency transformer link,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 644-654, 2000.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *