|
REFERENCES A. SRM Basics [1] T. J. E. Miller, Switched reluctance motors and their Control, Oxford, Clarendon Press, 1993. [2] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001. [3] P. C. Sen, Principles of electric machines and power electronics, 2nd ed., New Jersey: John Wiley & Sons, Inc., 1997. [4] H. H. Moghbelli and M. H. Rashid, “Performance review of the switched reluctance motor drives,” in Proc. IEEE SCAS, 1991, vol. 1, pp. 162-165. [5] A. Chiba, M. Takeno, N. Hoshi, M. Takemoto, S. Ogasawara and M. A. Rahman, “Consideration of number of series turns in switched-reluctance traction motor competitive to HEV IPMSM,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2333-2340, 2012. [6] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012. [7] K. Kiyota, T. Kakishima, H. Sugimoto and A. Chiba, “Comparison of the test result and 3D-FEM analysis at the knee point of a 60 kW SRM for a HEV,” IEEE Trans. Magn., vol. 49, no. 5, pp. 2291-2294, 2013. [8] P. Andrada, B. Blanqué, E. Martínez and M. Torrent, “A novel type of hybrid reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 469-476, 2014. [9] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion system: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006. [10] M. Takeno, A. Chiba, N. Hoshi, S. Ogasawara, M. Takemoto and M. A. Rahman, “Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 48, no. 4, pp.1327-1334, 2012.
[11] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV: design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp.111-121, 2000. [12] A. Chiba, K. Kiyota, N. Hoshi, M. Takemoto and S. Ogasawara, “ Development of a rare-earth-free SR motor with high torque density for hybrid vehicles,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 175-182, 2015. [13] D. Lu and N. C. Kar, “Neural network based torque control of switched reluctance motor for hybrid electric vehicle propulsion at high speeds,” in Proc. IEEE EPEC, 2009, pp. 1-6. [14] M. Cacciato, A. Consoli, G. Scarcella and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. PESC, 2008, June, pp. 1235-1241. [15] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, 2012. [16] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1079-1087, 1995. [17] H. Y. Yang, Y. C. Lim and H. C. Kim, “Acoustic noise/vibration reduction of a single-phase SRM using skewed stator and rotor,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4292-4300, 2013. B. SRM Converters [18] J. W. Ahn, J. Liang, and D. H. Lee, “Classification and analysis of switched reluctance converters,” JEET, vol. 5, pp. 571-579, Nov 2010.S. [19] FCAS20DN60BB smart power module for SRM, www.fairchildsemi.com/ds/ FC/FCAS20DN60BB.pdf. [20] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998. [21] S. Sindhuja and D. Susitra, “Design of a novel high grade converter for switched reluctance motor drive using component sharing,” in Proc. IEEE ICEETS, 2013, pp. 1174-1178.
[22] J. H. Choi, T. H. Kim, Y.S. K, S. B. Lim, S. J. Lee, Y. H. Kim and J. Lee, “The finite element analysis of switched reluctance motor considering asymmetric bridge converter and DC link voltage ripple,” IEEE Trans. Magn., vol. 41, no. 5, pp. 1640-1643, 2005. [23] H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008. [24] S. Gairola, Priti and L. N. Paliwal, “A new power converter for SRM drive,” in Proc. IEEE ICPCES, 2010, pp. 1-6. [25] H. C. Chang and C. M. Liaw, “Development of a front-end converter for switched-reluctance motor drive,” in Proc. IEEE ICEMS, 2007, pp. 414-419. [26] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” in Proc. IEEE Elect. Power Appl., 1993, vol. 140, no. 5, pp. 316-322. [27] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IET Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000. [28] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010. [29] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009. C. Model and Equivalent Circuits [30] B. Fahimi, G. Suresh, J. Mahdavi and M. Ehsani, “A new approach to model switched reluctance motor drive application to dynamic performance prediction, control and design,” in Proc. PESC, 1998, vol. 2, pp. 2097-2102. [31] M. Ayaz and A. B. Yildiz, “Control of switched reluctance motor containing a linear model,” in Proc. IEEE MED, 2006, pp. 1-6. [32] M. Ayaz and A. B. Yildiz, “An equivalent circuit model for switched reluctance motor,” in Proc. IEEE MELCON, 2006, pp. 1182-1185.
[33] C. Lin, W. Wang, M. McDonough, and B. Fahimi, “An extended field reconstruction method for modeling of switched reluctance machines,” IEEE Trans. Magn., vol. 48, no. 2, pp. 1051-1054, 2012. [34] W. Ding, L. Liu, J. Lou, and Y. Liu, “Comparative studies on mutually coupled dual-channel switched reluctance machines with different winding connections,” IEEE Trans. Magn., vol. 49, no. 11, pp. 5574-5589, 2013. [35] F. L. M. dos Santos, J. Anthonis, F. Naclerio, J. J. C. Gyselinck, H. Van der Auweraer and L. C. S. Góes, “Multiphysics NVH modeling: simulation of a switched reluctance motor for an electric vehicle,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 469-476, 2014. [36] V. Valdivia, R. Todd, F. J. Bryan, A. Barrado, A. Lázaro and A. J. Forsyth, “Behavioral modeling of a switched reluctance generator for aircraft power systems,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2690-2699, 2014. [37] M. K. Kumar1 and G. R. K. Murthy, “Modeling and simulation of 8/6 pole switched reluctance motor with closed loop speed control,” in Proc. IEEE PrimeAsia, 2013, pp. 89-95. [38] Y. T. Chang, C. K. Eric, “A simulation model for a 4 phase switched reluctance motor for PSIM,” in Proc. 4th Int. Conf. PESA, 2011, pp. 1–5. [39] O. Ichinokura, T. Onda, M. Kimura, T. Watanabe, T. Yanada and H. J. Guo, “Analysis of dynamic characteristics of switched reluctance motor based on SPICE,” IEEE Trans. Magn., vol. 34, no. 4, pp. 2147-2149, 1998. [40] A.Siadatan, V.Najmi and E.Afjei, “Modeling, simulation and analysis of A novel two layer 8/6 hybrid switched reluctance motor/field-assisted generator,” in Proc. IEEE ICEE, 2012, pp. 495-500. [41] K. I. Hwu, Development of a switched reluctance motor drive, Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2001. D. Current Control of SRM [42] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[43] R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Proc. Elect. Power Appl., vol. 3, no. 5, pp. 453-460, 2009. [44] P. Srinivas and P. V. N. Prasad, “Voltage control and hysteresis current control of a 8/6 switched reluctance motor,” in Proc. ICEMS, 2007, pp. 1557-1562. [45] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009. [46] G. Gallegos-Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines” in Proc. IEEE IAS, 2002, vol. 2, pp. 1212-1218. [47] Z. Ruiwei, Q. Xisen, J. Liping, Z. Yingchao, Z. Tianwen and N. Jintong, “ An adaptive sliding mode current control for switched reluctance motor,” in Proc. IEEE ITEC-AP, 2014, pp. 1-6. [48] S. K. Sahoo, S. K. Panda and J. X. Xu, “Iterative learning-based high-performance current controller for switched reluctance motors,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 491-498, 2004. [49] I. Manolas, G. Papafotiou and S. N. Manias, “Sliding mode PWM for effective current control in switched reluctance machine drives,” in Proc. IEEE IPEC, 2014, pp. 1606-1612. [50] H. Makino, T. Kosaka and N. Matsui, “ Control performance comparisons among three types of instantaneous current profiling technique for SR motor,” IET Proc. PEMD., pp. 1-6, 2014. [51] S. K. Sahoo, S. Dasgupta, S. K. Panda and J. X. Xu, “A Lyapunov function-based robust direct torque controller for a switched reluctance motor drive system,” IEEE Trans. Power Electron., vol. 27, vol. 2, pp. 555-564, 2012. E. Speed Control [52] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 345-353, 2001. [53] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive Using variable structure approach,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp.800-808, 1997. [54] G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy” in Proc. IEEE IAS, 1995, vol. 1, pp. 263-270. [55] S. Rafael, A.J. Pires, P.J. C. Branco, “An adaptive learning rate approach for an online neuro-fuzzy speed controller applied to a switched reluctance machine,” in Proc. IEEE ISIE, 2005, vol. 3, pp. 941-944. [56] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002. [57] L.L.N. d. Reis, F. Sobreira, A.R.R. Coelhoa, O.M. Almeida, J.C.T. Campos and S. Daher, “Identification and adaptive speed control for switched reluctance motor using DSP,” in Proc. IEEE COBEP, 2009, pp. 836-841. F. Torque Ripple Reduction [58] E. Bizkevelci, K. Leblebicioglu and H. B. Ertan, “A sliding mode controller to minimize SRM torque ripple and noise,” in Proc. IEEE ISIE, 2004, vol. 2, pp. 1333-1338. [59] S. K. Sahoo, S. K. Panda and J. X. Xu, “Indirect torque control of switched reluctance motors using iterative learning control,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 200-208, 2005. [60] S. K. Sahoo, S. K. Panda and J. X. Xu, “Direct torque controller for switched reluctance motor drive using sliding mode control,” in Proc. PEDS, 2005, vol. 2, pp. 1129-1134. [61] A. D. Cheok and Y. Fukuda, “A new torque and flux control method for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 17, no. 4, pp. 543-557, 2002. [62] J. Y. Chai, Y. W. Lin and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elect. Power Applicat., vol. 153, no. 3, pp. 348-360, 2006. [63] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling” IEE Proc. Elect. Power Applicat., vol. 4, no. 5, pp. 380-396, 2010.
G. Commutation Instant Tuning [64] X. D. Xue, J. K. Lin, Z. Zhang, T. W. Ng, K. F. Luk, K. W. E. Cheng and N. C. Cheung, “Study of motoring operation of in-wheel switched reluctance motor drives for electric vehicles,” in Proc. 3rd Int. Conf. PESA, 2009, pp. 1–6. [65] H. M. Cheshmehbeigi, S. Yari, A. R. Yari and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched- reluctance motor drives using fuzzy adaptive controller,” in Proc. EPE’09, Sep. 2009, pp.1-10. [66] Y. Sozer and D.A. Torrey, “Optimal turn-off angle control in the face of automatic turn-on angle control for switched-reluctance motors,” in Proc. IET EPA, 2007, vol. 1, pp. 395-401. [67] M. N. F. Nashed, K. Ohyama, K. Aso, H. Fujii and H. Uehara, “Automatic turn-off angle control for high speed SRM drive,” in Proc. IEEE ISIE, 2006, vol. 3, pp. 2152-2157. [68] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003. [69] S. A. Fatemi, H. M. Cheshmehbeigi and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856. H. Switch-Mode Rectifiers [70] W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE SECON, 1998, pp. 348-353. [71] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, vol. 3, pp. 749-755, 2003. [72] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC–DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003. [73] T. G. Amaral, V. F. Pires, M. Crisostomo and J. F. Silva, “Adaptive fuzzy control of a single-phase sinusoidal rectifier with step-up/down Characteristics,” in Proc. IEEE ICIT, 2000, pp. 147-152. [74] M. Dawande and G. K. Dubey, “Bang–bang current control with predecided switching frequency for switch-mode rectifiers,” IEEE Trans. Ind. Electron., vol. 46, no. 1, pp. 61-66, 1999. [75] S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1417-1425, 2004. [76] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust ripple compensation and current waveform controls,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 560-566, 2004. [77] M. Sippola, “Output voltage ripple reduction of a high power factor mode operated isolated charge-pump AC/DC converter,” in Proc. IEEE PTC, 2003, pp. 1-4. [78] W. Y. Choi, J. M. Kwon, E. H. Kim, J. J. Lee, and B. H. Kwon, “ Bridgeless boost rectifier with low conduction losses and reduced diode reverse-recovery problems,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 769-780, 2007. [79] C. Petrea and M. Lucanu, “Bridgeless power factor correction converter working at high load variations,” in Proc. ISSCS, 2007, vol. 2, pp. 1–4. [80] S. H. Li and C. M. Liaw, “Modelling and quantitative direct digital control for a DSP-based soft-switching-mode rectifier,” IEE Proceedings, Electric Power Applications, vol. 150, no. 1, pp. 21-30, 2003 [81] C. M. Liaw and T. H. Chen, “A soft-switching mode rectifier with power factor correction and high frequency transformer link,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 644-654, 2000.
|