帳號:guest(3.144.3.183)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳昱璋
作者(外文):Chen, Yu Chang
論文名稱(中文):具混合儲能源及插入式能源補充之風力開關式磁阻發電機供電直流微電網
論文名稱(外文):A WIND SWITCHED RELUCTANCE GENERATOR FED MICRO-GRID WITH HYBRID STORAGE AND PLUG-IN ENERGY HARVESTING MECHANISM
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang Ming
口試委員(中文):曾萬存
陳盛基
廖聰明
口試委員(外文):Tseng, Wan Tsun
Chen, Seng Chi
Liaw, Chang Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061515
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:222
中文關鍵詞:風力發電機開關式磁阻電機微電網儲能系統飛輪蓄電池超電容交錯式負載變頻器強健控制換相移位插入式能 源收集機構
外文關鍵詞:Wind generatorswitched-reluctance machinemicro-gridenergy storage systemflywheelbatterysuper-capacitorinterleavingload inverterrobust controlcommutation shift,plug-in energy harvester.
相關次數:
  • 推薦推薦:0
  • 點閱點閱:42
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
本論文旨在開發以風力開關式磁阻發電機為主之直流微電網,其直
流匯流排電壓由開關式磁阻發電機經由交錯式昇壓直流/直流轉換器建
立。藉由適當地之電力電路設計、換相移位設定、強健電壓電流控制及
適當電壓命令設定等,所建發電機於變動之驅動轉速及負載下具良好之
直流匯流排電壓調控特性。為從事微電網之實測性能評估,本文亦建構
一空間向量弦波脈寬調變之三相負載變頻器,做為測試負載。其於線性
及非線性負載下,均具良好之穩態交流電壓波形及動態電壓調節特性。
於所建之混合式儲能系統,超電容直並於開關式磁阻發電機之輸
出,在變動輸入能源與負載下,具改善之直流匯流排電壓調控特性。而
較長時間之能源支撐則由電池與飛輪儲能系統提供。電池組經由一雙向
昇降/昇降壓直流/直流介面轉換器介接至微電網之共通直流匯流排,而
開關式磁阻馬達驅動之飛輪則採用單臂雙向昇/降壓直流/直流介面轉換
器。經由適當地設計之控制器,可得良好之充、放電特性。此外,亦配
有傾卸式負載,以避免能源過剩造成直流匯流排過壓。
另外,本論文建構一插入式電能收集機構,於風能與儲能短缺時,
可取得之三相交流源可插入提供能源支撐。單相交流源與直流源也可輸
入所建之電能收集機構。
A switched-reluctance generator (SRG) based DC micro-grid is developed in this
thesis. Its DC bus voltage is established by the SRG through an interleaved boost DC/DC
converter. The well-regulated DC bus voltage under varying shaft driving speed and load
condition is achieved by properly handling the related key issues, such as power circuit
design, commutation instant setting and shifting, robust current and voltage control, and
voltage command setting. A three-phase load inverter with space vector PWM scheme is
established and used as the test load. Good steady-state AC voltage waveform and dynamic
response are preserved under linear and nonlinear loads.
In the developed hybrid energy storage system, a super-capacitor bank is directly
connected across the SRG output to yield the improved DC bus voltage regulation
characteristic against the fluctuations of source and load. As to the long-period energy
support, it is accomplished by the battery/flywheel storage system. The battery bank is
interfaced to the common DC bus via a bidirectional buck/boost-buck/boost DC/DC
converter. And the switched-reluctance motor (SRM) driven flywheel adopts the oneleg
bidirectional buck/boost DC/DC converter as its interface. Good charging/discharging
performances are obtained by the designed control schemes. Moreover, a chopped dump
load is equipped for preventing the bus from over-voltage due to the occurrence of energy
surplus.
Additionally, an integrated plug-in switched mode rectifier (SMR) based energy
harvesting system is developed in this thesis. The possible harvested three-phase AC source
can be interfaced to the established micro-grid for providing the energy support as the energy
deficiencies of wind source and storage devices occur. The input sources to the developed
system can also be single-phase AC or DC sources.
ACKNOWLEDGEMENTS........................................i
ABSRACT................................................ii
LIST OF CONTENTS......................................iii
LIST OF FIGURES.......................................vii
LIST OF TABLES.......................................xvii
LIST OF SYMBOLS.....................................xviii
CHAPTER 1 INTRODUCTION .................................1
CHAPTER 2 OVERVIEW OF MICRO-GRID AND SWITCHED- RELUCTANCE
MACHINE.......................................7
2.1 Introduction ...............................7
2.2 Micro-grids.................................7
2.3 Wind Generators ............................8
2.4 Energy Storage Devices.....................10
2.5 Switched-Reluctance Machines ..............14
2.6 Some Key Issues of an SRM and an SRG ......22
2.7 Interface DC-DC Converters ................24
2.8 Three-phase Switch-mode Rectifiers ........25
2.9 Overview of PWM Inverters .................27
CHAPTER 3 ESTABLISHMENT OF A WIND SWITCHED- RELUCTANCE
GENERATOR SYSTEMWITH FOLLOWED BOOST DC/DC
CONVERTER ...................................33
3.1 Introduction ..............................33
3.2 System Configuration ......................33
3.3 Power Circuits ............................35
3.4 Control Schemes ...........................47
3.5 Experimental Performance Evaluation .......53
CHAPTER 4 BATTERY/FLYWHEEL HYBRID ENERGY STORAGE
SYSTEM ......................................74
4.1 Introduction ..............................74
4.2 System Configuration of the Developed SRM-
driven Flywheel ...........................74
4.3 Flywheel Bidirectional Interface DC/DC
Converter .................................80
4.4 Control Scheme ............................87
4.5 Discharging Operation of SRM-Driven
Flywheel ..................................92
4.6 The Developed Battery Energy Storage
System ....................................99
4.7 Measured Results of the BESS .............105
CHAPTER 5 THE DEVELOPED PLUG-IN SMR BASED ENERGY
HARVESTING SYSTEM ..........................109
5.1 Introduction .............................109
5.2 Plug-in Three-phase Bridgeless DCM SMR with
Three-phase AC Input .....................109
5.3 Plug-in Three-phase Bridgeless DCM SMR with
Single-phase AC Input ....................125
5.4 Plug-in Three-phase Bridgeless DCM SMR with
DC Input .................................128
5.5 Three-Phase PWM Load Inverter ............130
5.6 Performance Evaluation of the Plug-In
Mechanism for Powering Three-phase Load
Inverter, Charging Battery and Driving
Flywheel .................................142
CHAPTER 6 OPERATION PERFORMANCE EVALUATION OF THE WIND
SRG-BASED DC MICRO-GRID ....................147
6.1 Introduction .............................147
6.2 Whole DC Micro-grid System Configuration .147
6.3 Performance Evaluation of the Established DC
Micro-grid with Three-phase Load Inverter 149
6.4 Performance Evaluation of the Developed Wind
SRG and Battery Energy Storage System ....157
CHAPTER 7 CONCLUSIONS ................................161
REFERENCES ...........................................163
APPENDIX .............................................172
[1] Y. Ito, Z.Q. Yang and H. Akagi, “DC microgrid based distribution power generation system,” in Proc. IEEE IPEMC, 2004, pp. 1740-1745.
[2] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgrids,” IEEE Power Energy, vol. 5, no. 4, pp. 78-94, 2007.
[3] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang and F. C. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. IEEE OPTIM, 2010, pp.1369-1380.
[4] H. Kakigano, Y. Miura and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, 2010.
[5] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, 2011.
[6] M. Fathi and H. Bevrani, “Statistical cooperative cower dispatching in interconnected microgrids,” IEEE Trans. Sustainable Energy., vol. 4, no. 3 pp. 586-593, 2013.
[7] M. Sechilariu, Wang Baochao and F. Locment, “Building integrated photovoltaic system with energy storage and smart grid communication,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1607-1618, 2013.
[8] P. C. Loh, D. Li, Y. K. Chai and F. Blaabjerg, “Autonomous operation of hybrid microgrid with AC and DC subgrids,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214-2223, 2013.
[9] T. Dragicevic, J. M. Guerrero, J. C. Vasquez and D. Skrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, 2014.
[10] Lu Xiaonan, Sun Kai, J. M. Guerrero, J. C. Vasquez and Huang Lipei, “State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2804-2815, 2014.
[11] F. R. Islam, H. R. Pota and M. S. Ali, “V2G technology for designing active filter system to improve wind power quality,” in Proc. IEEE AUPEC, 2011, pp. 1-6.
[12] P. C. Sen, Principles of Electric Machines and Power Electronics, 2nd ed., New Jersey: John Wiley & Sons, Inc., 1997.
[13] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
[14] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
[15] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[16] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kw IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
[17] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, 2012.
[18] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[19] B. Bilgin, A. Emadi and M. Krishnamurthy, “Design considerations for switched reluctance machines with a higher number of rotor poles,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3745-3756, 2012.
[20] S. E. Schulz and K. M. Rahman, “High performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[21] R. Gobbi and K. Ramar, “Optimisation techniques for a hysteresis current controller to minimise torque ripple in switched reluctance motors,” IET Proc. Elect. Power Appl., vol. 3, no. 5, pp. 453-460, 2009.
[22] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009.
[23] Z. Lin, D. Reay, B. Williams and X. He, “High-performance current control for switched reluctance motors based on on-line estimated parameters,” IEEE Trans. Elect. Power Appl., vol. 4, no. 1, pp. 67-74, 2010.
[24] Y. Kuwahara, H. Ono, T. Kosaka, N. Matsui and H. Shimada, “Precise pulsewise current drive of SRM under PWM control,” in Proc. IEEE PEDS, 2013, pp. 1049-1054.
[25] R. Mikail, I. Husain, Y. Sozer, M. S. Islam and T. Sebastian, “A Fixed Switching Frequency Predictive Current Control Method for Switched Reluctance Machines,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3717-2726, 2014.
[26] F. Peng and A. Emadi, “A digital PWM current controller for switched reluctance motor drives,” in Proc. IEEE ITEC, 2014, pp. 1-6.
[27] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 800-808, 1997.
[28] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive” IEE Proc. Elect. Power Appl., vol. 48, no.4, pp. 345-353, 2001.
[29] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst. vol. 38, no. 3, pp. 955-968, 2002.
[30] S. Rafael, A. J. Pires and P. J. C. Branco, “An adaptive learning rate approach for an on-line neuro-fuzzy speed controller applied to a switched reluctance machine,” in Proc. IEEE ISIE, 2005, vol. 3, pp. 941-944.
[31] L. L. N. dos Reis, F. Sobreira, A. R. R. Coelho, O. M. Almeida, J. C. T. Campos and S. Daher, “Identification and adaptive speed control for switched reluctance motor using DSP,” in Proc. IEEE COBEP, 2009, vol. 3, pp. 836-841.
[32] H. Hannoun, M. Hilairet and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2911-2921, 2010.
[33] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[34] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[35] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling” IEE Proc. Elect. Power Applicat., vol. 4, no. 5, pp. 380-396, 2010.
[36] V. P. Vujičić, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, 2012.
[37] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 3-14, 2002.
[38] N. Radimov, N. Ben-Hail and R. Rabinovici, “Switched reluctance machines as three-phase AC Autonomous generator,” IEEE Trans. Magnetics., vol. 42 no. 11, pp. 28, 2006.
[39] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Control of a switched reluctance generator for variable-speed wind energy applications,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 781-791, 2005.
[40] T. Yamaguchi, N. Yamamura and M. Ishda, “Study for small size wind power generating system using switched reluctance generator,” in Proc. IEEE ICIT, 2006, pp. 1510-1515.
[41] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
[42] A. W. F. V. Silveira, D. A. Andrade, L. C. Gomes, A. Fleury and C. A. Bissochi, “DSP based SRG load voltage control,” in Proc. IEEE VPPC, 2010, pp. 1-5
[43] W. Fernando, M. Barnes and O. Marjanovic, “Excitation control and voltage regulation of switched reluctance generators above base speed operation,” in Proc. IEEE VPPC, 2011, pp. 1-6.
[44] E. Afjei, A. Siadatan and M. Asgar, “Comparison between two field-assisted switched reluctance generators suitable for wind turbine applications,” in Proc. IEEE ICCEP, 2011, pp. 272-276.
[45] S. Narla, Y. Sozer and I. Husain, “Switched reluctance generator controls for optimal power generation and battery charging,” in Proc. IEEE ECCE, 2011, pp. 3575-3581.
[46] V. Nasirian, S. Kaboli and A. Davoudi, “Output power maximization and optimal symmetric freewheeling excitation for switched reluctance generators,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1031-1042, 2013.
[47] D. W. Choi, S. I. Byun and Y. H. Cho, “A study on the maximum power control method of switched reluctance generator for wind turbine,” IEEE Trans. Magn., vol. 50, no. 1, 2014.
[48] C. Sikder, I. Husain and Y. Sozer, “Switched reluctance generator control for optimal power generation with current regulation,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 307-316, 2014.
[49] H. Yahia, N. Liouane and R. Dhifaoui, “Differential evolution method-based output power optimization of switched reluctance generator for wind turbine applications,” IET Renew. Power Gen., vol. 8, no.7 , pp. 795-806, 2014.
[50] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[51] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
[52] A. K. Jain, N. Mohan, “SRM power converter for operation with high de- magnetization voltage,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1224-1231, 2005.
[53] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Applicat., vol. 147, no. 5, pp. 337-344, 2000.
[54] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[55] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
[56] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
[57] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[58] J. P. Barton and D. G. Infield, “Energy storage and its use with intermittent renewable energy,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 441-448, 2004.
[59] A. Kusko and J. DeDad, “Stored energy- short-term and long-term energy storage methods,” IEEE Trans. Ind. Appl. Mag., vol. 13, no. 4, pp. 66-72, 2007.
[60] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011.
[61] A. R. Sparacino, G. F. Reed, R. J. Kerestes, B. M. Grainger, Z. T. Smith, “Survey of battery energy storage systems and modeling techniques,” IEEE Power Eng. Soc. General Meeting, pp. 1-8, July 2012.
[62] M. Ortuzar, J. Moreno, and J. Dixon, “Ultracapacitor-based auxiliary energy system for an electric vehicle: implementation and evaluation,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2147-2156, 2007.
[63] P. Thounthong, S. Rael, and B. Davat, “Analysis of supercapacitor as second source based on fuel cell power generation,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 247-255, 2009.
[64] G. O. Cimuca, C. Saudemont, B. Robyns, and M. M. Radulescu, “Control and performance evaluation of a flywheel energy-storage system associated to a variable-speed wind generator,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1074-1085, 2006.
[65] R. Pena-Alzola, R. Sebastian, J. Quesada and A. Colmenar, “Review of flywheel based energy storage systems,” in Proc. IEEE Power Eng., 2011, pp. 1-6.
[66] G. O. Suvire, M. G. Molina and P. E. Mercado, “Improving the integration of wind power generation into AC microgrids using flywheel energy storage,” IEEE Trans. Smart Grid, vol. 3, no.4, pp. 1945-1954, 2012.
[67] R. Arghandeh, M. Pipattanasomporn and S. Rahman, “Flywheel energy storage systems for ride-through applications in a facility microgrid,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1955-1962, 2012.
[68] C. S. Hearn, M. C. Lewis, S. B. Pratap, R. E. Hebner, F. M. Uriarte, C. Dongmei and R.G. Longoria, “Utilization of optimal control law to size grid-level flywheel energy storage,” IEEE Trans. Sustain. Eng., vol. 4, no. 3, pp. 611-618, 2013.
[69] J.-I. Itoh, K. Tanaka, S. Matsuo and N. Yamada, “Experimental verification of flywheel power leveling system oriented to low cost and general purpose use,” in Proc. IEEE ECCE., 2013, pp.35-42.
[70] S. Gayathri Nair and N. Senroy, “Wind turbine with flywheel for improved power smoothening and LVRT,” in Proc. IEEE PES., 2013, pp.1-5.
[71] M. Chudy, L. Herbst and J. Lalk, “Wind farms associated with flywheel energy storage plants,” in Proc. IEEE PES/ ISGT-Europe, 2014, pp. 1-6.
[72] E. K. Hussain, D. Benchebra, K. Atallah, H. S. Ooi, M. Burke and A. Goodwin, “A flywheel energy storage system for an isolated micro-grid,” in Proc. IET RPG., 2014, pp. 1-6.
[73] F. Diaz-Gonzalez, F.D. Bianchi, A. Sumper and O. Gomis-Bellmunt,, “Control of a flywheel energy storage system for power smoothing in wind power plants,” IEEE Trans. Energy Convers., vol. 29, no. 1, pp. 204-214, 2014.
[74] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1086-1093, 2006.
[75] J. L. S. Neto, R. De Andrade, L. G. B. Rolim, A. C. Ferreira, G. G. Sotelo and W. Suemitsu, “Experimental validation of a dynamic model of a SRM used in superconducting bearing flywheel energy storage system,” in Proc. IEEE ISIE, 2006, pp. 2492-2497.
[76] J. Sun, Z. Kuang, S. Wang and Y. Chen, “Efficiency optimal control of switched reluctance machine over wide speed range applied to flywheel energy storage system,” in Proc. IEEE EML., 2012, pp.1-6.
[77] L. Zhihao, O. Onar, A. Khaligh, and E. Schaltz, “Design and control of a multiple input DC/DC converter for battery/ultra-capacitor based electric vehicle power system,” in Proc. IEEE APEC., pp. 591-596, 2009.
[78] K. W. Hu and C. M. Liaw, “On the flywheel/battery hybrid energy storage system for DC microgrid, ” in Proc. IEEE IFEEC, 2013, pp. 119-125.
[79] N. Mendis, K. M. Muttaqi, and S. Perera, “Management of battery-supercapacitor hybrid energy storage and synchronous condenser for isolated operation of PMSG based variable-speed wind turbine generating systems,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 944-953, 2014.
[80] K. W. Hu, P. H. Yi and C. M. Liaw, “An EV SRM drive powered by battery/ supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, Aug. 2015.
[81] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
[82] D. G. Holmes, P. Atmur, C. C. Beckett, M. P. Bull, W. Y. Kong, W. J. Luo, D. K. C. Ng, N. Sachchithananthan, P. W. Su, D. P. Ware and P. Wrzos, “An innovative, efficient current-fed push-pull grid connectable inverter for distributed generation systems,” in Proc. IEEE PESC, 2006, pp. 1-6.
[83] M. Delshad and H. Farzanehfard, “A soft switching flyback current-fed push pull DC-DC Converter with active clamp circuit,” in Proc. IEEE PECON, 2008, pp. 203-207.
[84] F. J. Nome and I. Barbi, “A ZVS clamping mode-current-fed push-pull DC-DC converter,” in Proc. IEEE ISIE, 2009, vol. 2, pp. 617-621.
[85] Y. H. Kim, S. C. Shin, J. H. Lee, Y. C. Jung and C. Y. Won, “Soft-switching current-fed push-pull converter for 250-W AC module applications,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 863-872, 2014.
[86] U. R. Prasanna and A. K. Rathore, “Current-fed interleaved phase-modulated single-phase unfolding inverter: analysis, design, and experimental results,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 310-319, 2014.
[87] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1437-1443, 2009.
[88] E. Hiraki, K. Hirao, T. Tanaka and T. Mishima, “A push-pull converter based bidirectional DC-DC interface for energy storage systems,” in Proc. IEEE EPE, 2009, pp. 1-10.
[89] N. M. L. Tan, T. Abe and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011.
[90] Y. C. Chang, “Development of a switched-reluctance generator and its application to the establishment of microgrid system,” Ph.D. dissertation, Department of Electrical Engineering National Tsing Hua University, ROC, 2010.
[91] J. C. Wang, “A wind switched-reluctance generator based DC micro-grid with interleaving interface converter and multiple energy storage devices,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2013.
[92] T. S. Lin, “A wind switched-reluctance generator based DC micro-grid with interleaving interface converter and multiple energy storage devices,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2014.
[93] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, New York: Pergamon Press, 1988.
[94] B. K. Bose, Modern Power Electronic and AC Drive, New Jersey: Prentice Hall, 2002.
[95] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, New Jersey: Wiley-IEEE Press, 2003.
[96] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4492-4500, 2009.
[97] K. Selvajyothi and P. A. Janakiraman, “Reduction of voltage harmonics in single phase inverters using composite observers,” IEEE Trans. Power Del., vol. 25, no. 2, pp. 1045-1057, 2010.
[98] S. Dasgupta, S. N. Mohan, S. K. Sahoo and S. K. Panda, “Evaluation of current reference generation methods for a three-phase inverter interfacing renewable energy sources to generalized micro-grid,” in Proc. IEEE PEDS, 2011, pp.316-321.
[99] B. Sahan, S. V. Araujo, C. Noding and P. Zacharias, “Comparative evaluation of three-phase current source inverters for grid interfacing of distributed and renewable energy systems,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2304-2318, 2011.
[100] J. M. Espí, J. Castelló, R. García-Gil, G. Garcerá and E. Figueres, “An adaptive robust predictive current control for three-phase grid-connected inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3537-3546, 2011.
[101] R. Carballo, R. Nunez, V. Kurtz and F. Botteron, “Design and implementation of a three-phase DC-AC converter for microgrids based on renewable energy sources,” IEEE Trans. Latin Ameri., vol. 11, no. 1, pp. 112-118, 2013.
[102] G. G. Pozzebon, A. F. Q. Goncalves, G. G. Pena, N. E. M. Mocambique and R. Q. Mavhado, “Operation of a three-phase power converter connected to a distribution system,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1810-1818, 2013.
[103] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999.
[104] A. M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
[105] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converter,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[106] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[107] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converter,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[108] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[109] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[110] S. Gadelovitz, A. Kuperman, “Modeling and classical control of unidirectional Vienna rectifiers,” in Proc. IEEE PQ, 2012, pp. 1-4.
[111] J. W. Kolar, U. Drofenik, and F. C. Zach, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (VIENNA) rectifier,” in Proc. IEEE PESC, 1996, vol. 2, pp. 1329-1336.
[112] H. Ertl, J. W. Kolar, and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. IEEE APEC, 1996, pp. 514-523.
[113] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[114] R. Tonkski, L. A. C. Lopes, and F. Dos Reis, “A single-switch three-phase boost rectifier to reduce the generator losses in wind energy conversion systems,” in Proc. IEEE EPEC, 2009, pp. 1-8.
[115] J. Hui, A. Bakhshai, and P. K. Jain, “Control and modeling of a wind energy system with a three-phase DCM boost converter and a sensorless maximum point power tracking method,” in Proc. IEEE/PES Transm. Distrib. Conf. Expo., 2012, pp. 1-7.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *