帳號:guest(3.147.59.219)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李柏宏
作者(外文):Lee, Po Hung
論文名稱(中文):分切合整數位控制之 20 kVA 三相四線式多功能換流器研製
論文名稱(外文):Design and Implementation of a 20 kVA D-Σ Digital Controlled Three-Phase Four-Wire Multi-Function Inverter System
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai Fu
口試委員(中文):羅有綱
陳裕愷
吳財福
余國瑞
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061514
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:116
中文關鍵詞:三相四線式換流器分切合整數位控制
外文關鍵詞:three-phase four-wire inverterD-Σ digital control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:709
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究提出分切合整數位控制之20 kVA三相四線式多功能換流器研製,此換流器可操作成併網型或獨立型的再生能源交流供電系統與電池儲能裝置。此兩種應用的獨立型系統控制皆為電壓追蹤型分切合整數位控制法,其涵蓋了負載阻抗估測以及重複控制,使得換流器在任意三相平衡線性負載、三相不平衡負載與非線性負載的條件下能夠穩定輸出弦波電壓。而併網型系統的控制則係電流追蹤型分切合整數位控制法,加上垂降控制的線性實虛功補償方式,以達成特定功率因數的輸出以及維持電網電壓和頻率不變。此外,所應用的分切合整數位控制法係以兩相調變作為基礎,同時引入由向量空間脈寬調變轉換而得的開關時序,並且進一步考慮電感值變化,故對前述兩種系統皆可允許寬廣的電感值變化,達到降低鐵芯體積與成本之目的,增加能夠應用於產業界的可能性。本研究的要點著重於建立分切合整數位控制法在數學上的理論分析模型,並且以控制系統的基本理論來分析分切合整數位控制法在數學理論上所定義的系統穩定度與輸出追蹤能力。文章後段係使用最新功率半導體材料碳化矽所製的金屬氧化物半導體場效電晶體(MOSFET)來實際量測與製作一部20 kVA之三相四線式換流器,以驗證此控制法的可行性。文末則是點出本研究所提出之控制法與傳統控制法的差別何在以及未來的延伸方向。
This thesis presents design and implementation of a 20 kVA division-summation (D-Σ) digital controlled three-phase four-wire multi-function inverter system. The in-verter can be operated in grid-connected or stand-alone mode to act as a renewa-ble-energy ac power-supply system. In the stand-alone mode, the control of this in-verter uses the D-Σ digital control law for voltage tracking which includes load im-pedance estimation and repetitive control, causing the inverter can stabilize sinusoidal output voltage for unbalanced load and nonlinear load. For the grid-connected mode, in order to achieve a specific PF and stabilize grid voltage and frequency, the control is the D-Σ digital control law for current tracking which supplemented by a droop control based linear P-Q compensation. Moreover, the D-Σ digital control law in this research is based on Two-Phase Modulation (TPM) scheme and associated with the switching sequence transformed from space vector pulse width modulation (SVPWM) scheme, and thus, the inductance variation can be taken into account, reducing core size significantly. Finally, the control laws are verified with measured results from a 20 kVA three-phase four-wire inverter system.
總目錄
摘要 i
Abstract ii
總目錄 iv
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-2-1 換流器架構 2
1-2-2 換流器控制 5
1-3 論文大綱 9
第二章 D-Σ數位控制 11
2-1 換流器開關切換時序圖 11
2-2 受控體 13
2-2-1 區間Ⅰ(0°~60°) 15
2-2-2 區間Ⅱ(60°~120°) 18
2-2-3 區間Ⅲ(120°~180°) 19
2-2-4 區間Ⅳ(180°~240°) 20
2-2-5 區間Ⅴ(240°~300°) 21
2-2-6 區間Ⅵ(300°~360°) 23
2-3 控制法則 25
2-4 電壓型控制 28
2-4-1 負載阻抗估測 28
2-4-2 電壓型控制系統穩定度分析 32
2-5 電流型控制 36
2-5-1 修正電流型控制的受控體及控制法則 36
2-5-2 垂降控制 36
2-5-3 電流型控制系統穩定度分析 37
第三章 系統程式規劃 41
3-1 主程式流程規劃 41
3-2 類比/數位中斷副程式流程規劃 42
3-3 子程式流程規劃 42
第四章 系統電路設計 46
4-1 微控制器RX62T簡介 46
4-2 輔助電源 48
4-3 電壓箝位電路 50
4-4 精密全波整流電路 51
4-5 交流側電壓電流偵測電路 51
4-5-1 電壓感測電路 51
4-5-2 電流感測電路 52
4-6 直流鏈電壓偵測電路 53
4-7 直流鏈充電電路 54
4-8 開關隔離驅動電路 55
4-9 電網零交越偵測電路 56
4-10 繼電器驅動電路 56

第五章 實驗結果 59
5-1 電氣規格 59
5-2 實務考量 59
5-2-1 電感值變化考量 59
5-2-2 開關死區 63
5-2-3 PWM設定 63
5-2-4 輸出濾波電容補償 64
5-2-5 迴授電路濾波電容 64
5-3 零組件 65
5-4 換流器系統圖及實體照片 65
5-5 換流器模擬系統建模 66
5-6 電壓型控制系統模擬與實測波形 68
5-6-1 電阻性負載 68
5-6-2 電感性負載 70
5-6-3 電容性負載 72
5-6-4 不平衡負載 74
5-7 電流型控制系統模擬與實測波形 75
5-7-1 PF = 1 75
5-7-2 PF = 0.707 leading 78
5-7-3 PF = 0.866 lagging 80
5-7-4 整流模式 82
5-7-5 垂降控制線性實虛功補償 84
5-8 耗損分析 86
5-8-1 電感損耗 86
5-8-2 開關損耗 88
5-8-3 控制電路損耗 89
5-8-4 總損耗與效率 89
5-9 總諧波失真 91
第六章 結論與未來研究方向 93
6-1 結論 93
6-2 未來研究方向 94
6-2-1 LCL濾波器設計 94
6-2-2 多模組並聯 94
參考文獻 96
[1] Q. Zhao and Z. Yin, “Battery energy storage research of photovoltaic power generation system in micro-grid,” in Proc. Critical Infrastructure (CRIS), pp. 1-4, Sep. 2010.
[2] B. Wu, Z. Yin and X. Xiao, “Super-capacitors energy storage system applied in the micro-grid,” in Proc. Industrial Electronics and Applications (ICIEA), pp. 1002-1005, Jun. 2010.
[3] C. Abbey and G. Joos, “Super-capacitor energy storage for wind energy applications,” IEEE Trans. on Industry Application, vol. 43, no. 3, pp. 769-776, 2007.
[4] Z. Wang, X. Li and G. Li, “Energy storage control for the photovoltaic generation system in a micro-grid,” in Proc. Critical Infrastructure (CRIS), pp. 1-5, Sep. 2010.
[5] H. Lu and B. He, “Application of the super-capacitor in a micro-grid,” Automation of Electric Power Systems, vol. 33, no. 2, pp. 87-91, 2009.
[6] L. Dimeas and N. D. Hatziargyriou, “Operation of a multiagent system for microgrid control,” IEEE Trans. on Power Systems, vol. 20, no. 3, pp. 1447-1455, 2005.
[7] J. A. Peas Lopes, C. L. Moreira and A. G. Madureira, “Defining control strategies for microgrids islanded operation,” IEEE Trans. on Power Systems, vol. 21, no. 2, pp. 916-924, 2006.
[8] L. N. Khanh, J. J. Seo, T. S. Kim and D. J. Won, “Pow-er-management strategies for a grid-connected PV-FC hybrid system,” IEEE Trans. on Power Delivery, vol. 25, no. 3, pp. 1874-1882, Jul. 2010.
[9] D. D. C. Lu and V. G. Agelidis, “Photovoltaic-battery-powered DC bus system for common portable electronic devices,” IEEE Trans. on Power Electronics, vol. 24, no. 3, pp. 849-855, Mar. 2009.
[10] A. Bhattacharya, C. Chakraborty and S. Bhattacharya, “Paral-lel-connected shunt hybrid active power filters operating at different switching frequencies for improved performance,” IEEE Trans. on Industry Electronics, vol. 59, no. 11, pp. 4007-4019, Nov. 2012.
[11] J. M. Shen, H. L. Jou and J. C. Wu, “Transformerless single-phase three-wire line-interactive uninterruptible power supply,” IET Power Electronics, vol. 5, no. 9 , pp. 1847–1855, Nov. 2012.
[12] E. Demirkutlu and A. M. Hava, “A scalar resonant-filter-bank-based output-voltage control method and a scalar minimum-switching-loss discontinuous PWM method for the four-leg-inverter-based three-phase four-wire power supply,” IEEE Trans. on Industry Applications, pp. 982-991, 2009.
[13] M. Zhang, D. J. Atkinson, Bing Ji and M. Armstrong, “A near-state three-dimensional space vector modulation for a three-phase four-leg voltage source inverter,” IEEE Trans. on Power Electronics, vol. 29, pp. 5715-5726, Nov. 2014.
[14] R. Zhang, V. H. Prasad, D. Boroyevich and F. C. Lee, “Three-dimensional space vector modulation for four-leg volt-age-source converters,” IEEE Trans. on Power Electronics, pp. 314-326, 2002.
[15] Manuel A. Perales, M. M. Prats, Ramón Portillo, José L. Mora, José I. León and Leopoldo G. Franquelo, “Three-dimensional space vector modulation in abc coordinates for four-leg voltage source converters” IEEE Power Electronics letters, vol. 1, no. 4, Dec. 2003.
[16] K. Zhang, Y. Kang, J. Xiong and J. Chen, “Direct repetitive control of SPWM inverter for UPS purpose,” IEEE Trans. on Power Electronics, vol. 18, pp. 784-792, May 2003.
[17] Y. Ye, K. Zhou, B. Zhang, D. Wang and J. Wang, “High-performance repetitive control of PWM DC-AC converters with real-time phase-lead FIR filter,” IEEE Trans. on Circuits and Systems II, vol. 53, pp. 768-772, Aug. 2006.
[18] Richard W. Longman, “Iterative learning control and repetitive control for engineering practice,” International Journal of control, vol. 73, 8 Nov. 2010.
[19] K. D. Brabandere, B. Bolsens, J. V. Keybus, A. Woyte, J. Driesen and R. Belmans, “A voltage and frequency droop control method for parallel inverters,” IEEE Trans. on Power Electronics, vol. 22, no. 4, pp. 1107-1115, July 2007.
[20] H. Bevrani and S. Shokoohi, “An intelligent droop control for simulataneous voltage and frequency regulation in islanded microgrids,” IEEE Trans. on Smart Grid, vol. 4, pp. 1505-1513, Sept. 2013.
[21] Chang Sung Corporation(CSC), “Magnetic powder cores,” www.changsung.com, ver. 13.
[22] Y. Chen and K. M. Smedley, “One-cycle-controlled three-phase grid-connected inverters and their parallel operation,” IEEE Trans. on Industrial Electronics, pp. 663-671, 2008.
[23] Y. Chen and K. M. Smedley, “Parallel operation of one-cycle con-trolled three-phase PFC rectifiers,” IEEE Trans. on Industrial Electronics, pp. 3217-3224, 2007.
[24] Heng Deng, R. Oruganti and D. Srinivasan, “Analysis and design of iterative learning control strategies for UPS inverters,” IEEE Trans. on Industrial Electronics, vol. 54, pp. 1739-1751.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *