帳號:guest(3.142.199.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何致嘉
作者(外文):He, Jr Jia
論文名稱(中文):具車輛至電網及電網至車輛操作功能蓄電池/超電容供電之切換式磁阻馬達驅動系統
論文名稱(外文):A BATTERY/SUPERCAPACITOR POWERED EV SRM DRIVE WITH G2V/V2G FUNCTIONS
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang Ming
口試委員(中文):黃昌圳
徐國鎧
口試委員(外文):Hwang, Chang Chou
Shyu, Kuo Kai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:102061506
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:156
中文關鍵詞:開關式磁阻馬達電動車蓄電池超電容介面轉換器切換式整流器單相三線式變頻器再生煞車電網至車輛車輛至家庭車輛至電網
外文關鍵詞:SRMEVbatterysupercapacitorinterface converter SMRsingle-phase three-wire inverterregenerative brakinggrid-to-vehiclevehicle-to-homevehicle-to-grid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:352
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在開發一具電網至車輛、車輛至家庭和車輛至電網操作功能蓄電池/超電容供電之電動車三相開關式磁阻馬達驅動系統,所有的操作均利用馬達驅動系統中既有元件構成整合式電路實現。
所開發馬達驅動系統非對稱橋式轉換器之直流鏈,由蓄電池經一交錯式升壓直流/直流轉換器建立電壓。而超電容係以一雙向降升壓直流/直流轉換器介接至直流鏈,並經由二極體將超電容連接至蓄電池。此安排容許超電容有效地吸收再生煞車能量,當超電容電壓增加至某種程度時,可自動地對蓄電池充電。相反地,超電容可迅速地放電對馬達加速。在馬達驅動系統之控制改善方面,先由所提之電流控制機構增強線圈電流響應。其中,迴授控制輔以估測之反電動勢前饋控制及簡易強健追蹤誤差消除控制,並以動態換相移位降低高速下之反電動勢效應。至於速度控制迴路,亦予以適當設計以得良好之驅動性能,含加減速、反轉和再生煞車操作。另外,使用超電容之操作特性及優點亦由實測評估之。
車輛處於閒置狀態,電網可對車上蓄電池從事具功率因數校正之充電。為達此目的,建構多種功率因數校正切換式整流器集積電路,含單相全橋式升壓切換式整流器、單相無橋升壓切換式整流器和三相無橋不連續電流模式切換式整流器。切換式整流器後接一直流/直流降壓轉換器為主之充電器,以得良好充電性能。在車輛至家庭操作上,建構一單相三線式變頻器,由升壓之直流鏈電壓產出 110V/220V 60Hz 交流電源供給家電負載。採用差模及共模控制,在未知及非線性負載下,可得良好之輸出電壓波形。至於車輛至電網操作,車上蓄電池可經變頻器供給家電負載,多餘之能量可回送至電網。
This thesis is mainly concerned with the development of a battery/supercapacitor powered electric vehicle (EV) three-phase switched-reluctance motor (SRM) drive having grid-to-vehicle (G2V), vehicle-to-home (V2H), and vehicle-to-grid (V2G) operation capabilities. All these operations are achieved with integrated schematics formed using the SRM drive embedded components.
In the developed asymmetric bridge converter fed SRM drive, its DC-link voltage is established from the battery via an interleaved boost DC/DC converter. While the super- capacitor (SC) is interfaced to the DC-link by an one-leg bidirectional buck/boost DC/DC converter. And the SC is linked to the battery through a diode. This arrangement allows the SC effectively absorbing the regenerative braking energy and automatically charging the battery as the SC voltage is increased to a certain value. Conversely, the SC can quickly discharge to assist the motor acceleration. Then the battery follows to support the motor driving operation. In SRM drive control improvement, the winding current response is enhanced by the proposed control scheme. Wherein, the feedback controller is augmented with an observed back electromotive force (EMF) feed-forward controller and a simple robust current tracking error cancellation controller (RCECC). Moreover, a dynamic commutation tuning (DCT) scheme is added to reduce the back-EMF effects under higher speeds. As to the speed control loop, it is also properly designed to yield satisfactory driving performances, including acceleration/deceleration, reversible and regenerative braking operations. The operating characteristics and the advantages of using SC are also evaluated experimentally.
In EV idle condition, its battery can be charged from the grid (G2V) with power factor correction (PFC). Several types of on-board PFC switch-mode rectifiers (SMRs) are formed. The integrated circuits of these SMRs include a single-phase H-bridge boost (SMR), a single-phase bridgeless boost SMR and a three-phase bridgeless discontinue current mode (DCM) SMR. All these SMRs are followed by a DC/DC buck converter based battery charger to yield good charging performance. In autonomous V2H operation, a single-phase three-wire (1P3W) inverter with boosted DC-link voltage (550V) from the battery (156V) via a DC/DC boost converter is formed to generate the 110V/220V 60Hz AC voltage outputs for powering domestic appliances. Good output voltage waveforms are generated under unknown and non-linear loads via applying differential mode (DM) and common mode (CM) controls. As to the grid-connected V2G operation, the inverter can power the domestic appliances, and the surplus energy can be sent back to the grid.
Page
ABSTRACT i
ACKNOWLEDGEMENTS ii
LIST OF CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES xv
LIST OF SYMBOLS xvi
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 SWITCHED-RELUCTANCE MOTOR AND ITS APPLICATION TO ELECTRIC VEHICLE PROPULSION 7
2.1 Introduction 7
2.2 Some Basic Affairs of SRM Drive 7
2.3 Some Commonly Used SRM Converters 11
2.4 Possible Front-end Converters 14
2.4.1 DC/DC Front-end Converters 14
2.4.2 AC/DC Front-end Converters 15
2.5 Electric Vehicles 16
2.6 Superapacitor and Flywheel 17
2.7 The Developed EV Emulated Load 21
2.7.1 Load Torque Modeling of EV Motor Drive 21
2.7.2 Estimation of Parameters for the Developed EV Load Test-bench 23
2.7.3 Driving Characteristic of the SRM Drive with the Developed EV Load Testbench 28
2.8 G2V/V2H/V2G Operations of Electric Vehicles 28
2.9 Some Example EV Multi-functional Converters 30
2.10 Configuration and Functions of the Developed EV SRM Drive 32
CHAPTER 3 THE DEVELOPED EV SRM DRIVE 34
3.1 Introduction 34
3.2 Possible Schematics of Battery/SC Fed SRM Drive System Configurations 34
3.3 Configurations and Operations of the Developed SRM Drive in All Modes 36
3.4 Analysis and Design of DC/DC Front-end Converter 42
3.4.1 One-leg Bidirectional Buck/Boost DC/DC Converter for Supercapacitor 42
3.4.2 Interleaved Boost DC/DC Converter for Battery 47
3.4.3 Experiment Performance Evaluation for the Interleaved DC/DC Converter 50
3.5 Switched-reluctance Motor Drive in Driving Mode 52
3.5.1 Power Circuit 52
3.5.2 Digital Control Environment 57
3.5.3 Control Schemes 60
3.6 Measured Results in Driving Mode 65
CHAPTER 4 GRID-TO-VEHICLE CHARGING MODE 86
4.1 Introduction 86
4.2 System Configurations of the Established EV SRM Drive in G2V Mode 86
4.2.1 Battery Charger with Single-phase H-bridge Boost SMR 86
4.2.2 Battery Charger with Single-phase Bridgeless Boost SMR 87
4.2.3 Battery Charger with Three-phase Bridgeless DCM SMR 89
4.3 Buck DC/DC Based Charger 92
4.4 Development of Integrated Two-stage SMR Based Battery Chargers 94
4.4.1 Power Circuit 94
4.4.2 Control Scheme 98
4.5 Simulated and Experimental Results 100
4.5.1 Single-phase H-bridge Boost SMR Based Battery Charger 100
4.5.2 Single-phase Bridgeless Boost SMR Based Battery Charger 104
4.5.3 Three-phase Bridgeless DCM Boost SMR Based Battery Charger 109
CHAPTER 5 VEHICLE-TO-HOME AND VEHICLE-TO-GRID DISCHARGING MODE 116
5.1 Introduction 116
5.2 System Configurations and Functional Statements 116
5.3 Single-phase PWM Inverters 118
5.3.1 H-bridge SPWM Inverter 118
5.3.2 Some Possible Single-phase Three-wire Inverters 120
5.4 V2H Operation 120
5.4.1 Power Circuit 122
5.4.2 1P3W Inverter Control Scheme 123
5.4.3 Measured Results 127
5.5 V2G Operation 132
5.5.1 System Configuration and Functional Descriptions 132
5.5.2 Control Schemes 132
5.5.3 Measured Results 135
CHAPTER 6 CONCULSIONS 143
REFERENCES 145
A. Renewable Energy and Electric Vehicles
[1] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgrids,” IEEE Power Energy ., vol. 5, no. 4, pp. 78-94, 2007.
[2] J. Arai, K. Iba, T. Funabashi, Y. Nakanishi, K. Koyanagi and R. Yokoyama, “Power electronics and its applications to renewable energy in Japan,” IEEE Trans. Magn., vol. 8, no. 3, pp. 52-66, 2008.
[3] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang and F. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. IEEE OPTIM, 2010, pp. 1369-1380.
[4] G. Wu, S. Kodama, Y. Ono and Y. Monma, “A hybrid microgrid system including renewable power generations and energy storages for supplying both the DC and AC loads,” in Proc. IEEE ICRERA, 2012, pp. 1-5.
[5] I. Strnad and D. Skrlec, “An approach to the optimal operation of the microgrid with renewable energy sources and energy storage systems,” in Proc. IEEE EUROCON, 2013, pp. 1135-1140.
[6] F. Blaabjerg and K. Ma, “Future on power electronics for wind turbine systems,” IEEE Trans. Power Electron., vol. 1, no. 3, pp. 139-152, Sep. 2013.
[7] J. G. Matos, F. S. F. Silva and L. A. S. Ribeiro, “Power control in AC isolated microgrids with renewable energy sources and energy storage systems,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3490-3498, 2015.
[8] S. S. Thale, R. G. Wandhare and V. Agarwal, “A novel reconfigurable microgrid architecture with renewable energy sources and storage,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1805-1816, 2015.
[9] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, Nov. 2006.
[10] G. Nanda and N. C. Kar, “A survey and comparision of characteristics of motor drives used in electric vehicles,” in Proc. IEEE CCECE, 2006, pp. 811-814.
[11] Y. Gao and M. Ehsani, “Design and control methodology of plug-in hybrid electric vehicles,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 633-640, 2010.
[12] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, Jan. 2012.
[13] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
[14] V. R. Roberto, L. G. Pau, H. P. Daniel, S. Andreas, C. Ignasi, C. Z. Miguel and V. Narcís, “Electric vehicles in power systems with distributed generation: vehicle to microgrid (V2M) project,” in Proc. IEEE EPQU, 2011, pp. 1-6.
[15] K. Yoshimi, M. Osawa, D. Yamashita, T. Niimura, R. Yokoyama, T. Masuda, H. Kondou and T. Hirota, “Practical storage and utilization of household photovoltaic energy by electric vehicle battery,” in Proc. IEEE ISGT, 2012, pp. 1-8.
[16] L. Chunhua, K. T. Chau, W. Diyun and G. Shuang, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” in Proc. IEEE, vol. 101, no. 11, pp. 2409-2427, 2013.
[17] J. G. Pinto, V. Monteiro, H. Goncalves and J. L. Afonso, “Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode,” IEEE Trans. Veh. Technol., vol. 63, no. 3, pp. 1104-1116, 2014.
[18] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
[19] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[20] N. Hoshi, A. Chiba and M. Takemoto, “Characteristic measurements of switched reluctance motor on prototype electric vehicle,” in Proc. IEEE IEVC, 2012, pp. 1-8.
[21] H. Gao, Y. Gao and M. Ehsani, “A neural network based SRM drive control strategy for regenerative braking in EV and HEV,” in Proc. IEEE IEMDC, 2001, pp. 571-575.
[22] N. Wada, N. Momma and I. Miki, “Rotor position estimation method in high speed region for 3-phase SRM used in EV,” in Proc. ICEMS, 2012, pp. 1-5.
[23] P. J. Grbovic, P. Delarue, P. Le Moigne and P. Bartholomeus, “A three-terminal ultracapacitor-based energy storage and PFC device for regenerative controlled electric drives,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 301-316, Jan. 2012.

B. Battery and Supercapacitor
[24] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, 2005.
[25] M. Brandl, H. Gall, M. Wenger, V. Lorentz, M. Giegerich, F. Baronti, G. Fantechi, L. Fanucci, R. Roncella, R. Saletti, S. Saponara, A. Thaler, M. Cifrain and W. Prochazka, “Batteries and battery management systems for electric vehicles,” in Proc. IEEE DATE, 2012, pp. 971-976.
[26] S. Pay and Y. Baghzouz, “Effectiveness of battery-supercapacitor combination in electric vehicles,” in Proc. IEEE Power Tech Conf, Bologna, Italy, Jun. 2003, vol. 3, pp. 1-6.
[27] A. F. Burke, “Batteries and ultra-capacitors for electric, hybrid, and fuel cell vehicles,” in Proc. IEEE, vol. 95, no. 4, pp. 806-820, 2007.
[28] S. Lu, K. A. Corzine and M. Ferdowsi, “A new battery/ultracapacitor energy storage system design and its motor drive integration for hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1516-1523, 2007.
[29] M. B. Camara, H. Galous, F. Gustin and A. Berthon, “Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles,” IEEE Trans. Veh. Technol., vol.57, no. 5, pp.2721-2735, Sept. 2008.
[30] H. Yoo, S. K. Sul, Y. Park and J. Jeong, “System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 108-114, 2008.
[31] S. Lambert, V. Pickert, J. Holden, W. Li and X. He, “Overview of supercapacitor voltage equalization circuits for an electric vehicle charging application,” in Proc. IEEE VPPC, 2010, pp. 1-7.
[32] M. B. Camara, H. Gualous, F. Gustin and A. Berthon, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications- polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, 2010.
[33] M. A. Tankari and M. B. Camara, “DC-bus voltage control for multi-sources systems-battery and supercapacitors,” in Proc. IEEE IECON, 2011, pp. 1270-1275.
[34] M. Zandi, A. Payman, J. Martin, S. Pierfederici, B. Davat and F. Meibody-Tabar, “Energy management of a fuel cell/supercapacitor/battery power source for electric vehicular applications,” IEEE Trans. Veh. Technol., vol. 60, no. 2, pp. 443-443, Feb. 2011.
[35] J. M. A. Curti, X. Huang, R. Minaki and Y. Hori, “A simplified power management strategy for a supercapacitor/battery hybrid energy storage system using the half- controlled converter,” in Proc. IEEE IECON, Oct. 2012, pp. 4006-4011.
[36] M. Neenu and S. Muthukumaran, “A battery with ultracapacitor hybrid energy storage system in electric vehicles,” in Proc. IEEE ICAESM, 2012, pp. 731-735.
[37] R. Carter, A. Cruden and P. J. Hall, “Optimizing for efficiency or battery life in a battery/supercapacitor electric vehicle,” IEEE Trans. Veh. Technol., vol. 61, no. 4, pp. 1526-1533, May 2012.
[38] A. Ostadi and S. K. Chen, “Hybrid energy storage system (HESS) in vehicular applications: a review on interfacing battery and ultra-capacitor units,” in Proc. IEEE ITEC, 2013, pp. 1-7.
[39] A. Tina, M. B. Camara, B. Dakyo and Y. Azzouz, “DC/DC and DC/AC converters control for hybrid electric vehicles energy management-ultracapacitors and fuel cell,” IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 686-696, 2013.
[40] K. Hata, N. Watanabe and Kyungmin Sung, “A series or parallel changeover system using battery with EDLC for EV,” in Proc. EPE, 2013, pp. 1-10.
[41] X. Huang, H. Tosiyoki and H. Yoichi, “System design and converter control for super capacitor and battery hybrid energy system of compact electric vehicles,” in Proc. IEEE ECCE, 2014, pp. 1-10.
[42] X. Huang, H. Tosiyoki and H. Yoichi, “Bidirectional power flow control for battery super capacitor hybrid energy system for electric vehicles with in-wheel motors,” in Proc. EPE-PEMC, 2014, pp. 1078-1083.

C. Switched-Reluctance Motor Drive and Converter
[43] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
[44] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
[45] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 3, no. 5, pp. 1079-1087, 1995.
[46] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[47] K. M. Rahman and S. E. Schulz, “Design of high efficiency and high density switched reluctance motor for vehicle propulsion,” in Proc. IEEE IAC, 2001, vol. 3, pp. 2104-2110.
[48] S. Kachapornkul, P. Jitkreeyarn, P. Somsiri, K. Tungpimolrut, A. Chiba and T. Fukao, “A design of 15 kW switched reluctance motor for electric vehicle applications,” in Proc. IEEE ICEMS, 2007, pp. 1690-1693.
[49] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
[50] T. Shibamoto, K. Nakamura, H. Goto and O. Ichinokura, “A design of axis-gap switched reluctance motor for in-wheel direct drive EV,” in Proc. IEEE ICEM., 2012, pp. 1158-1163.
[51] B. Bilgin, A. Emadi and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEV,” IEEE Trans. Ind. Electron., vol. 60, no.72, pp. 2564-2575, 2013.
[52] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[53] A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
[54] S. Mir, I. Husain and M. E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, pp. 912-921, 1997.
[55] T. W. Ching, K. T. Chau and C. C. Chan, “A novel zero-voltage soft-switching converter for switched reluctance motor drives,” in Proc. IEEE IECON, 1998, vol. 2, pp. 899-904.
[56] L. G. B. Rolim, W. I. Suemitsu, E. H. Watanable and R. Hanitsch, “Development of an improved switched reluctance motor drive using a soft-switching converter,” in IEE Proc. Electric Power Appl., vol. 146, no. 5, pp. 488-494, 1999.
[57] D. H. Lee, G. Xu and J. W. Ahn, “Analysis of passive boost power converter for three-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2961-2971, 2010.
[58] K. Chimata, N. Hoshi and J. Haruna, “Characteristics of switched reluctance motor drive circuit with voltage boost function without additional reactor,” in Proc. IEEE Power Electron., 2012, pp. 1-6.
[59] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” in IEE Proc. Electric Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[60] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.

D. Modeling and Dynamic Control
[61] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, pp. 714-722, 2000.
[62] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003.
[63] L. Chenjie, W. Wei, M. McDonough and B. Fahimi, “An extended field reconstruction method for modeling of switched reluctance machines,” IEEE Trans. Magn., vol. 48, no. 2, pp. 1051-1054, Feb. 2012.
[64] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
[65] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
[66] G. Gallegos-Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines,” in Proc. Ind. Appl, 2002, vol. 2, pp. 1212-1218.
[67] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[68] Z. Lin, D. Reay, B. Williams and X. He, “High-performance current control for switched reluctance motors based non-line estimated parameters,” IET Elect. Power Appl., vol. 4, no.1, pp. 67-74, 2010.
[69] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[70] C. Lucas, M. M. Shanehchi, P. Asadi and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
[71] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” Proc. IET-Electric Power Appl., vol. 148, no. 4, pp. 345-353, 2001.
[72] S. K. Panda, X. M. Zhu and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON, 1997, vol. 3, pp. 989-994.
[73] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
E. Ripple Torque Reduction and Commutation Instant shifting
[74] J. Y. Chai, Y. W. Lin and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” in IEE Proc. Elec. Power Appl., vol. 153, no. 3, pp. 384-360, 2006.
[75] J. Y. Chai and C. M. Liaw, “Reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling,” IET Electric Power Applications, vol. 4, no. 5, pp. 380-396, May 2010.
[76] K. Edamura and I. Miki, “Design of stator and rotor for noise reduction of SRM,” in Proc. ICEMS, 2014, pp. 1871-1874.
[77] Y. Jin, B. Bilgin, and A. Emadi, “An extended-speed low-ripple torque control of switched reluctance motor divers,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1457-1470, Mar. 2015.
[78] J. J. Gribble, P. C. Kjaer, C. Cossar and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
[79] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self- tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
[80] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[81] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[82] S. A. Fatemi, H. M. Cheshmehbeigi and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[83] K. W. Hu, Y. Y. Chen and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tunings,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.

F. Front-End Converters
[84] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389.
[85] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
[86] J. Silvestre, “Half-bridge bidirectional DC-DC converter for small electric vehicle,” in Proc. IEEE Power Electron., 2008, pp. 884-888.
[87] Y. Du, X. Zhou, S. Bai and S. Lukic, “Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks,” in Proc. IEEE APEC, 2010, pp.1145-1151.
[88] L. Kumar and S. Jain, “A multiple input dc-dc converter for interfacing of battery/ ultracapacitor in EVs/HEVs/FCVs,” in Proc. IEEE IICPE, 2012, pp. 1-6.
[89] O. C. Onar, J. Kobayashi and A. Khaligh, “A fully directional universal power electronic interface for EV, HEV, and PHEV Applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5489-5498, 2013.
[90] O. Hegazy, J. V. Mierlo and P. Lataire, “Analysis, modeling, and implementation of a multi-device interleaved DC/DC converter for fuel cell hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4445-4458, Nov. 2012.
[91] S. Zhang and X. Yu, “Control strategy to achieve minimum/zero input current ripple for the interleaved boost converter in photovoltaic/fuel cell power conditioning system,” in Proc. IEEE ECCE., 2012, pp. 4301-4306.
[92] J. Blanes, R. Gutierrez, A. Garrigos, J. Lizan and J. Cuadrado, “Electric cehicle battery life extension using ultracapacitors and an FPGA controlled interleaved buck boost converter,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5940-5948, Dec. 2013.

G. Switch-Mode Rectifiers and G2V Operation
[93] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[94] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[95] L. Huber, J. Yungtaek and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[96] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[97] X. Zhou, S. Lukic, S. Bhattacharya and A. Huang, “Design and control of grid-connected converter in bi-directional battery charger for plug-in hybrid electric vehicle application,” in Proc. IEEE VPPC., 2009, pp. 1716-1721.
[98] S. Lacroix, E. Laboure and M. Hilairet, “An integrated fast battery charger for electric vehicle,” in Proc. IEEE VPPC, 2010, pp. 1-6.
[99] S. Haghbin, K. Khan, S. Lundmark, M. Alaküla, O. Carlson, M. Leksell and O. Wallmark, “Integrated chargers for EV’s and PHEV’s: examples and new solutions,” in Proc. ICEM, 2010, pp. 1-6.
[100] S. Haghbin, S. Lundmark, M. Alakula and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., pp. 1-14, 2012.
[101] J. Liang, G. Xu, L. Jian and M. Chang, “Analysis parking position of integrated switched reluctance motor drive system with on-board charger for EV,” in Proc. IEEE VPPC, 2012, pp.72-77.
[102] I. Lee and G. W. Moon, “Half-bridge integrated ZVS full-bridge converter with reduced conduction loss for electric vehicle battery chargers,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 3978-3988, 2014.
[103] H. Yihua, S. Xueguan, C. Wenping and J. Bing, “New SR drive with integrated charging capacity for plug-in hybrid electric vehicles (PHEVs),” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5722-5731, Oct. 2014.
[104] I. Subotic, N. Bodo and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. PP, no. 99, pp. 1, 2015.
H. Inverters and V2H/V2G Operations
[105] X. Yaosuo, C. Liuchen and S. Pinggang, “Recent developments in topologies of single-phase buck-boost inverters for small distributed power generators: an overview,” in Proc. IPEMC, 2004, vol. 3, pp. 1118-1123.
[106] Y. Wue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single- phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[107] B. S. Prasad, S. Jain and V. Agarwal, “Universal single-stage grid-connected inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008.
[108] S. H. Lee, K. T. Kim, J. M. Kwon and B. H. Kwon, “Single-phase transformerless bi- directional inverter with high efficiency and low leakage current,” IET Power Electron., vol. 7, no. 2, pp. 451-458, 2014.
[109] M. Amirabadi, B. Jeihoon and H. A. Toliyat, “Sparse ac-link buck–boost inverter,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 3942-3953, 2014.
[110] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” in IEE Proc. Elec. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
[111] C. G. C. Branco, C. M. T. Cruz, R. P. T. Bascope and F. L. M. Antunes, “A non- isolated single-phase UPS topology with 110V/220V input-output voltage,” in Proc. IEEE IECON, 2005, pp. 930-935.
[112] X. Zhou, G. Wang, S. Lukic, S. Bhattacharya and A. Huang, “Multi-function bi- directional battery charger for plug-in hybrid electric vehicle application,” in Proc. IEEE ECCE, pp. 3930-3936, 2009.
[113] F. Berthold, B. Blunier, D. Bouquain, S. Williamson and A. Miraoui, “PHEV control strategy including vehicle to home (V2H) and home to vehicle (H2V) functionalities,” in Proc. IEEE VPPC, 2011, pp. 1-6.
[114] B. Kramer, S. Chakraborty and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283.
[115] A. K. Verma, B. Singh and D. T. Shahani, “Grid to vehicle and vehicle to grid energy transfer using single-phase bidirectional AC-DC converter and bidirectional DC-DC converter,” in Proc. IEEE ICEAS, 2011, pp. 1-5.
[116] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 559-564, 2012.
[117] W. Kramer, S. Chakraborty, B. Kroposki, A. Hoke, G. Martin and T. Markel, “Grid interconnection and performance testing procedures for vehicle-to-grid (V2G) power electronics,” Technical Report NREL/CP-5500-54505, May 2012.
[118] M. A. Khan, I. Husain and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power flow between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
[119]M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no.12, pp. 5673-5689, 2013.
[120] M. C. Kisacikoglu, M. Kesler and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation,” IEEE Trans. Smart Grid., vol. 6, no. 2, pp. 767-775, Mar. 2015.
[121] S. Kim and F. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, Jun. 2015.
[122] O. Onar, J. Kobayashi and A. Khaligh, “A multi-level grid interactive bi-directional AC/DC-DC/AC converter and a hybrid battery/ultra-capacitor energy storage system with integrated magnetics for plug-in hybrid electric vehicles,” in Proc. IEEE APE, 2011, pp. 829-835.
[123] T. S. Ustun, C. R. Ozansoy and A. Zayegh, “Implementing Vehicle-to-Grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, Jun. 2013.

I. Others
[124] T. J. Barlow, S. Latham, I. S. McCrae and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” June, 2009.
[125] M. J. Yeh, “A switched-reluctance motor drive for electric vehicles with grid-to- vehicle and vehicle-to-grid bidirectional operation capabilities,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2012.
[126] Y. J. Sun, “Development of an electric vehicle switched-reluctance motor drive with super-capacitor,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2014.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *