帳號:guest(3.12.136.63)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江彩語
作者(外文):Chiang, Tsaiyu
論文名稱(中文):利用脂質奈米粒子抑制SDF1-α/CXCR4並傳遞抗血管新生siRNA達到治療纖維化的功效
論文名稱(外文):Lipid-Based Nanoparticles Inhibiting SDF1-α/ CXCR4 axis and Delivering Anti-angiogenic siRNA for Ttreating Liver Fibrosis
指導教授(中文):陳韻晶
指導教授(外文):Chen, Yunching
口試委員(中文):趙麗洋
曾昱程
口試委員(外文):Chau, Lee-Young
Tseng, Yu-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:102038513
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:53
中文關鍵詞:奈米粒子siRNA傳遞纖維化治療抗血管新生治療SDF-1α/CXCR4路徑
外文關鍵詞:nanoparticlessiRNA deliveryfibrosis therapyanti-angiogenic therapySDF-1α/CXCR4
相關次數:
  • 推薦推薦:0
  • 點閱點閱:65
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
肝纖維化 (Liver fibrosis) 是肝硬化的前身,在病理生理學上指出肝纖維化就是活化的成肌纖維母細胞 (myofibroblast) 及活化的肝星狀細胞 (HSCs, Hepatic Stellate Cells) 導致大量細胞外基質 (ECM) 及膠原蛋白 (collagen) 過度沈積在肝臟組織上,造成肝纖維化。近年來,抗血管新生之藥劑在治療肝纖維化上具有很高的前瞻性;此外HSCs中活化的SDF1-α (Stromal cell-derived factor α)/CXCR4 (C-X-C Chemokine receptor type 4) 軸將導致其分化 (differentiation)、增生 (proliferation) 及製造collagen I因而造成肝纖維化。
因此,我們設計一種標靶CXCR4的脂質奈米粒子,將血管內皮生長因子(VEGF, vascular endothelial growth factor) 小干擾RNA (siRNA, short-interfering RNAs) 有效地送入因餵食四氯化碳 (CCl4) 而產生肝纖維化的小鼠模型中,作為抗血管新生之藥劑;同時,我們所設計的奈米粒子將加入CXCR4的拮抗劑(antagonist)以達到標靶及抗纖維化的功效。本研究我們證明了無論在細胞實驗或是動物實驗中,標靶CXCR4的脂質奈米粒子均能有效地運送VEGF siRNA至活化的HSCs中並降低其VEGF的表現量,而因此造成纖維化肝組織中抗血管新生的效果。
此外,即使活化的HSCs會提升SDF1-α/CXCR4的表現量,奈米粒子中包覆的CXCR4拮抗劑將有效地運送至活化的HSCs中,而能抑制其分化、增生及製造collagen I的能力。綜合言之,同時結合VEGF siRNA及CXCR4 antagonist這兩種藥劑的合併療法將成為治療肝纖維化醫療上重要的里程碑。
The pathophysiology of liver fibrosis is the consequence of activation myofibroblast and hepatic stellate cells (HSCs) leading to excessive deposition of extracellular matrix (ECM) and collagen. Recently, anti-angiogenic therapy has emerged as a highly promising therapeutic strategy for treating liver fibrosis. Moreover, in HSCs, activation of SDF1-α (Stromal cell-derived factor α)/CXCR4 (Chemokine (C-X-C motif) receptor 4) axis leads to differentiation, proliferation and production of collagen I, and thus results in liver fibrosis.
Herein, we developed a CXCR4-targeted lipid-based nanoparticle (NP) formulation to specifically deliver VEGF siRNA as an anti-angiogenic agent into the fibrotic livers of CCl4-induced fibrotic models. A CXCR4 antagonist was added into NPs to serve as both a targeting moiety and an anti-fibrotic treatment. We demonstrated that CXCR4-targeted NPs could efficiently deliver VEGF siRNAs into activated HSCs in the fibrotic liver and down-regulate VEGF expression in vitro and in vivo. Efficiently delivering of VEGF siRNA to HSCs caused an anti-angiogenic effect in the fibrotic liver.
Furthermore, despite the up-regulation of SDF1-α/CXCR4 axis in activated HSCs, CXCR4 antagonist delivered by NPs effectively blocked the activation, proliferation and production of collagen I in HSCs. To sum up, co-delivering VEGF siRNA and CXCR4 antagonist as a combination treatment might be a promising approach against liver fibrosis.
總目錄
中文摘要 i
Abstract iii
總目錄 iv
圖目錄 vi
縮寫目錄 vii
第一章 緒論 1
一、研究背景 1
1.1 何謂肝硬化 1
1.2 肝硬化機制 2
1.3治療 8
1.4基因治療 10
1.4.1 Plasmid DNA(pDNA) 11
1.4.2 siRNA 12
1.4.3 以siRNA作為治療方式遇到的挑戰 13
1.4.3.1 病毒載體輸送 14
1.4.3.2 非病毒載體輸送 14
二、研究動機與目的 15
第二章 實驗材料與方法 17
2.1 所用材料 17
2.2 細胞培養 18
2.3 動物實驗 18
2.4 裝載siRNA之CXCR4-targeted NPs的製備與定性 18
2.5 免疫組織化學 20
2.6 細胞存活率分析 20
2.7 免疫螢光染色 21
2.8 西方墨點法分析 22
2.9 H&E (Hematoxylin and Eosin) 染色 23
2.10 Masson’s trichrome 染色 23
2.11 細胞攝入研究分析 24
2.12 肝攝入研究 24
2.13 統計分析方式 25
第三章 實驗結果 26
3.1 肝產生纖維化時CXCR4的表現量亦隨之增加 26
3.2 利用free AMD3100或AMD3100-NPs去抑制SDF1-α/CXCR4之結合進一步抑制HSCs的活化及增生 26
3.3 AMD-NPs將傳遞VEGF siRNAs至HSCs體外實驗及肝纖維化體內實驗,並達到顯著之基因靜默效果 27
3.4 在肝纖維化小鼠模型中,藉由AMD-NPs傳遞VEGF siRNAs進而抑制血管新生以達到抗肝纖維化之能力 29
3.5 在肝纖維化的小鼠模型中,藉由AMD-NPs傳遞VEGF siRNAs改善肝纖維化的情況 30
第四章 實驗討論與結論 32
第五章 圖表 36
第六章 參考文獻 47

第六章 參考文獻
1. Wanless IR, Wong F, Blendis LM, Greig P, Jenny Heathcote E, Levy G. Hepatic and portal vein thrombosis in cirrhosis: possible role in development of parenchymal extinction and portal hypertension. Hepatology 1995;21(5):1238-1247.
2. Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. Journal of hepatology 2009;50(3):604-620.
3. Wake K. Structure of the sinusoidal wall in the liver. Cells of the hepatic sinusoid 1995;5:241-241.
4. Bioulac-Sage P, Lafon M, Saric J, Balabaud C. Nerves and perisinusoidal cells in human liver. Journal of hepatology 1990;10(1):105-112.
5. Bonacchi A, Petrai I, Defranco RM, Lazzeri E, Annunziato F, Efsen E, Cosmi L, Romagnani P, Milani S, Failli P. The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis C. Gastroenterology 2003;125(4):1060-1076.
6. 钦圣兰, 赵长青, 平键, 周扬, 徐列明. NK 细胞与肝纤维化的关系及中药对 NK 等免疫细胞的影响. 中国免疫学杂志 2014;30(2):280-282.
7. Wong L, Yamasaki G, Johnson RJ, Friedman SL. Induction of beta-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. Journal of Clinical Investigation 1994;94(4):1563.
8. Kelly JD, Haldeman B, Grant FJ, Murray MJ, Seifert R, Bowen-Pope DF, Cooper J, Kazlauskas A. Platelet-derived growth factor (PDGF) stimulates PDGF receptor subunit dimerization and intersubunit trans-phosphorylation. Journal of Biological Chemistry 1991;266(14):8987-8992.
9. Failli P, Ruocco C, De Franco R, Caligiuri A, Gentilini A, Giotti A, Gentilini P, Pinzani M. The mitogenic effect of platelet-derived growth factor in human hepatic stellate cells requires calcium influx. American Journal of Physiology-Cell Physiology 1995;269(5):C1133-C1139.
10. Borkham-Kamphorst E, Kovalenko E, van Roeyen CR, Gassler N, Bomble M, Ostendorf T, Floege J, Gressner AM, Weiskirchen R. Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury. Laboratory Investigation 2008;88(10):1090-1100.
11. Kluwe J, Pradere JP, Gwak GY, Mencin A, De Minicis S, Österreicher CH, Colmenero J, Bataller R, Schwabe RF. Modulation of hepatic fibrosis by c-Jun-N-terminal kinase inhibition. Gastroenterology 2010;138(1):347-359.
12. Win KM, Charlotte F, Mallat A, Cherqui D, Martin N, Mavier P, Preaux AM, Dhumeau D, Rosenbaum J. Mitogenic effect of transforming growth factor‐β1 on human ito cells in culture: Evidence for mediation by endogenous platelet‐derived growth factor. Hepatology 1993;18(1):137-145.
13. Mullhaupt B, Feren A, Fodor E, Jones A. Liver expression of epidermal growth factor RNA. Rapid increases in immediate-early phase of liver regeneration. Journal of Biological Chemistry 1994;269(31):19667-19670.
14. Schuppan D, Ruehl M, Somasundaram R, Hahn EG. Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis 2001;21(3):351-72.
15. Brown B, Lindberg K, Reing J, Stolz DB, Badylak SF. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue engineering 2006;12(3):519-526.
16. Inagaki Y, Okazaki I. Emerging insights into transforming growth factor β Smad signal in hepatic fibrogenesis. Gut 2007;56(2):284-292.
17. Breitkopf K, Godoy P, Ciuclan L, Singer M, Dooley S. TGF-beta/Smad signaling in the injured liver. Zeitschrift fur Gastroenterologie 2006;44(1):57-66.
18. Yang L, Pang Y, Moses HL. TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends in immunology 2010;31(6):220-227.
19. Wasmuth HE, Tacke F, Trautwein C. Chemokines in liver inflammation and fibrosis. 2010. p 215-225.
20. Hong F, Tuyama A, Lee TF, Loke J, Agarwal R, Cheng X, Garg A, Fiel MI, Schwartz M, Walewski J. Hepatic stellate cells express functional CXCR4: Role in stromal cell–derived factor‐1α–mediated stellate cell activation. Hepatology 2009;49(6):2055-2067.
21. Sahin H, Trautwein C, Wasmuth HE. Functional role of chemokines in liver disease models. Nature Reviews Gastroenterology and Hepatology 2010;7(12):682-690.
22. Schwabe RF, Bataller R, Brenner DA. Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. American Journal of Physiology-Gastrointestinal and Liver Physiology 2003;285(5):G949-G958.
23. Seki E, De Minicis S, Gwak G-Y, Kluwe J, Inokuchi S, Bursill CA, Llovet JM, Brenner DA, Schwabe RF. CCR1 and CCR5 promote hepatic fibrosis in mice. The Journal of clinical investigation 2009;119(7):1858.
24. Zaldivar MM, Pauels K, von Hundelshausen P, Berres ML, Schmitz P, Bornemann J, Kowalska MA, Gassler N, Streetz KL, Weiskirchen R. CXC chemokine ligand 4 (Cxcl4) is a platelet‐derived mediator of experimental liver fibrosis. Hepatology 2010;51(4):1345-1353.
25. Wasmuth HE, Lammert F, Zaldivar MM, Weiskirchen R, Hellerbrand C, Scholten D, Berres M-L, Zimmermann H, Streetz KL, Tacke F. Antifibrotic effects of CXCL9 and its receptor CXCR3 in livers of mice and humans. Gastroenterology 2009;137(1):309-319. e3.
26. Marra F, Bertolani C. Adipokines in liver diseases. Hepatology 2009;50(3):957-969.
27. Ikejima K, Okumura K, Kon K, Takei Y, Sato N. Role of adipocytokines in hepatic fibrogenesis. Journal of gastroenterology and hepatology 2007;22(s1):S87-S92.
28. Leclercq IA, Farrell GC, Schriemer R, Robertson GR. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. Journal of hepatology 2002;37(2):206-213.
29. Hoteit MA, Anania FA. Treatment of fibrosis in nonalcoholic fatty liver disease. Current gastroenterology reports 2007;9(1):47-53.
30. Zhou Y, Jia X, Wang G, Wang X, Liu J. PI-3 K/AKT and ERK signaling pathways mediate leptin-induced inhibition of PPARγ gene expression in primary rat hepatic stellate cells. Molecular and cellular biochemistry 2009;325(1-2):131-139.
31. Rosmorduc O, Housset C. Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease. 2010. p 258-270.
32. Kinnman N, Housset C. Peribiliary myofibroblasts in biliary type liver fibrosis. Frontiers in bioscience: a journal and virtual library 2002;7:d496-503.
33. Sims DE. Recent advances in pericyte biology--implications for health and disease. The Canadian journal of cardiology 1991;7(10):431-443.
34. Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. Best practice & research Clinical gastroenterology 2011;25(2):195-206.
35. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature medicine 2012;18(7):1028-1040.
36. Richeldi L, Du Bois RM. Pirfenidone in idiopathic pulmonary fibrosis: the CAPACITY program. 2011.
37. Liu Y, Wang Z, Kwong SQ, Lui ELH, Friedman SL, Li FR, Lam RWC, Zhang GC, Zhang H, Ye T. Inhibition of PDGF, TGF-β, and Abl signaling and reduction of liver fibrosis by the small molecule Bcr-Abl tyrosine kinase antagonist Nilotinib. Journal of hepatology 2011;55(3):612-625.
38. Ogawa S, Ochi T, Shimada H, Inagaki K, Fujita I, Nii A, Moffat MA, Katragadda M, Violand BN, Arch RH. Anti‐PDGF‐B monoclonal antibody reduces liver fibrosis development. Hepatology Research 2010;40(11):1128-1141.
39. Wang Y, Gao J, Zhang D, Zhang J, Ma J, Jiang H. New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. Journal of hepatology 2010;53(1):132-144.
40. Morales-Ruiz M, Jiménez W. Neovascularization, angiogenesis, and vascular remodeling in portal hypertension. Portal Hypertension: Springer; 2005. p 99-112.
41. Morales-Ruiz M, Tugues S, Cejudo-Martín P, Ros J, Melgar-Lesmes P, Fernández-Llama P, Arroyo V, Rodés J, Jiménez W. Ascites from cirrhotic patients induces angiogenesis through the phosphoinositide 3-kinase/Akt signaling pathway. Journal of hepatology 2005;43(1):85-91.
42. Wang YQ, Ikeda K, Ikebe T, Hirakawa K, Sowa M, Nakatani K, Kawada N, Kaneda K. Inhibition of hepatic stellate cell proliferation and activation by the semisynthetic analogue of fumagillin TNP‐470 in rats. Hepatology 2000;32(5):980-989.
43. Salazar-Montes AM, Hernández-Ortega LD, Lucano-Landeros MS, Armendariz-Borunda J. New gene therapy strategies for hepatic fibrosis. World journal of gastroenterology: WJG 2015;21(13):3813.
44. Chen X, Dudgeon N, Shen L, Wang JH. Chemical modification of gene silencing oligonucleotides for drug discovery and development. Drug discovery today 2005;10(8):587-593.
45. Bumcrot D, Manoharan M, Koteliansky V, Sah DW. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature chemical biology 2006;2(12):711-719.
46. Nakamuta M, Morizono S, Tsuruta S, Kohjima M, Kotoh K, Enjoji M. Remote delivery and expression of soluble type II TGF-β receptor in muscle prevents hepatic fibrosis in rats. International journal of molecular medicine 2005;16(1):59-64.
47. Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. Journal of Controlled Release 2012;161(2):554-565.
48. Shen H, Sun T, Ferrari M. Nanovector delivery of siRNA for cancer therapy. Cancer gene therapy 2012;19(6):367-373.
49. Tang G. siRNA and miRNA: an insight into RISCs. Trends in biochemical sciences 2005;30(2):106-114.
50. Grimm D. Small silencing RNAs: state-of-the-art. Advanced drug delivery reviews 2009;61(9):672-703.
51. Cheng K, Yang N, Mahato RI. TGF-β1 gene silencing for treating liver fibrosis. Molecular pharmaceutics 2009;6(3):772-779.
52. Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nature medicine 2005;11(1):50-55.
53. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nature reviews Drug discovery 2009;8(2):129-138.
54. Van de Water FM, Boerman OC, Wouterse AC, Peters JG, Russel FG, Masereeuw R. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug metabolism and disposition 2006;34(8):1393-1397.
55. Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009;457(7228):426-433.
56. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, Shearer G, Chang L, Chiang Y, Tolstoshev P. T lymphocyte-directed gene therapy for ADA− SCID: initial trial results after 4 years. Science 1995;270(5235):475-480.
57. Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M. Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 2013;36(1):1-22.
58. Kay MA. State-of-the-art gene-based therapies: the road ahead. Nature Reviews Genetics 2011;12(5):316-328.
59. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences 1987;84(21):7413-7417.
60. Wu GY, Wu CH. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. Journal of Biological Chemistry 1987;262(10):4429-4432.
61. Wu GY, Wu CH. Receptor-mediated gene delivery and expression in vivo. Journal of Biological Chemistry 1988;263(29):14621-14624.
62. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular pharmaceutics 2008;5(4):505-515.
63. Bazile D, Prud'homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M. Stealth Me. PEG‐PLA nanoparticles avoid uptake by the mononuclear phagocytes system. Journal of pharmaceutical sciences 1995;84(4):493-498.
64. Chen Y, Wu JJ, Huang L. Nanoparticles targeted with NGR motif deliver c-myc siRNA and doxorubicin for anticancer therapy. Molecular Therapy 2010;18(4):828-834.
65. Cui Z, Han S-J, Vangasseri DP, Huang L. Immunostimulation mechanism of LPD nanoparticle as a vaccine carrier. Molecular pharmaceutics 2005;2(1):22-28.
66. Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, Kalluri R. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. Journal of Biological Chemistry 2007;282(32):23337-23347.
67. Chen Y, Huang Y, Reiberger T, Duyverman AM, Huang P, Samuel R, Hiddingh L, Roberge S, Koppel C, Lauwers GY. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal‐derived factor 1 alpha/C‐X‐C receptor type 4 axis and myeloid differentiation antigen–positive myeloid cell infiltration in mice. Hepatology 2014;59(4):1435-1447.
68. Vanheule E, Geerts AM, Van Huysse J, Schelfhout D, Praet M, Van Vlierberghe H, De Vos M, Colle I. An intravital microscopic study of the hepatic microcirculation in cirrhotic mice models: relationship between fibrosis and angiogenesis. International journal of experimental pathology 2008;89(6):419-432.
69. Ding B-S, Cao Z, Lis R, Nolan DJ, Guo P, Simons M, Penfold ME, Shido K, Rabbany SY, Rafii S. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 2014;505(7481):97-102.
70. Elpek GÖ. Angiogenesis and liver fibrosis. World journal of hepatology 2015;7(3):377.
71. Medina J, Arroyo AG, Sánchez‐Madrid F, Moreno‐Otero R. Angiogenesis in chronic inflammatory liver disease. Hepatology 2004;39(5):1185-1195.
72. Patsenker E, Popov Y, Stickel F, Schneider V, Ledermann M, Sägesser H, Niedobitek G, Goodman SL, Schuppan D. Pharmacological inhibition of integrin αvβ3 aggravates experimental liver fibrosis and suppresses hepatic angiogenesis. Hepatology 2009;50(5):1501-1511.
73. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134(6):1655-1669.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *