帳號:guest(3.16.203.103)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王儷穎
作者(外文):Wang Liying
論文名稱(中文):製備新穎多孔洞金奈米框暨其生物毒性之研究
論文名稱(外文):Synthesis and Characterization of Porous Gold Nanoshell with Low-Toxicity In Vitro and In Vivo
指導教授(中文):萬德輝
指導教授(外文):Wan Dehui
口試委員(中文):陳韻晶
張建文
口試委員(外文):Chen Yunching
Chang Chien-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:102038508
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:79
中文關鍵詞:多孔洞中空金奈米框細胞毒性生物分布性
外文關鍵詞:Porous gold nanoshellCytotoxicityBiodistribution
相關次數:
  • 推薦推薦:0
  • 點閱點閱:34
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  本論文為探討金屬奈米粒子在生物醫學工程中的基礎研究及應用潛力。第一部分著重於多孔洞中空金奈米框的合成與其生物毒性的探討。中空金奈米粒子由於其獨特的中空結構及近紅外光波段的良好吸收特性,在生醫工程領域中廣為討論及應用。然而值得注意的是,其組成中約含有40~50%的銀,使中空金奈米粒子於生物體內的穩定性有潛在的疑慮。我們先以伽凡尼置換反應(galvanic replacement)合成傳統的中空金奈米粒子,為了進一步降低結構中的銀含量並同時維持中空奈米結構,我們利用抗壞血酸將四氯金酸還原在中空金奈米粒子上進行結構補強,並再次透過伽凡尼置換反應,使得中空金奈米殼進行去合金化(dealloying),同時在表面蝕刻出孔洞,成功獲得多孔洞中空金奈米框。在蝕刻的過程中,經結構補強的中空金奈米粒子,其結構中剩餘的銀可以持續被四氯金酸氧化,使此奈米結構的銀含量最終降低至10%。值得注意的是,此結構仍然保有近紅外光的LSPR吸收特性,並可藉由調控奈米粒子的金殼厚度控制蝕刻出的孔洞大小。接著,我們分別測量其光熱穩定性及在生物基質中的穩定性質,發現銀的降低可大幅提升此奈米結構的穩定性,也能減少此結構所釋放出來的銀離子含量。透過體外的細胞實驗,我們發現此新穎奈米結構的確有助於改善原本中空金奈米粒子的細胞毒性,並不會產生自由基毒害細胞。最後在體內實驗中,我們將多孔洞中空金奈米框以尾靜脈注射的給藥方式觀察此奈米結構對小鼠的急毒性。經實驗證明,相較於會使小鼠肝臟發炎的中空金奈米粒子,多孔洞中空金奈米框擁有良好的生物相容性,對小鼠的肝臟不會造成任何影響。
  本論文的第二部分是在中空金奈米粒子的表面包覆金、鉑或鈀三種具有良好催化性質的金屬。有許多研究中指出,這些貴金屬奈米粒子在不同pH值時會具有過氧化物酶(peroxidase)或過氧化氫酶(catalase)的性質,可作為仿生酶使用。近年來,由雙金屬或三金屬以上組成的奈米結構,其獨特的結構及光學性質將能有效提升其催化效能。我們將金、鉑或鈀包覆中空金奈米粒子的表面,利用中空金奈米粒子的高表面積特性提高此三種金屬的催化活性,催化雙氧水分解為自由基,並利用ABTS捕捉自由基而從無色變綠色的能力偵測雙氧水的分解速度,比較包覆不同金屬的中空金奈米粒子的催化效果。
Gold-base nanostructures have recently received increasing interest due to their tunable localized surface plasmon resonance (LSPR) properties and great biocompatibility.
Hollow gold nanoparticles are attractive because of their unique structural and optical properties. Be able to absorb near infrared light, hollow gold nanoparticles are ideal for biomedical applications. However, there are some problems of hollow gold nanoparticles. Restrict to synthesis approach, the remaining Ag in the hollow gold nanoparticles is higher than 50%. In the first topic, we synthesize porous gold nanoparticles through a three major steps process, including galvanic replacement, gold deposition, and silver dealloying. We adjust the thickness of hollow gold nanoparticles to optimize the pore size on the surface. And we also successfully decrease the remaining silver in porous gold nanoparticles. With the decreasing silver content, the porous gold nanoshells have good stability in biomedia and the released amount of Ag ions is significantly reduced. From the in vitro experiments, we found porous gold nanoparticles have great biocompatibility and would not induce ROS (reactive oxygen species) generation. Finally, we examine the toxicity in vivo, porous gold nanoshells would not cause any abnormal pathological changes in liver, spleen, kidney and lung section after 1 day injection.
In the second topic, we deposit 3 kinds of metal (Au, Pt or Pd) onto the surface of hollow gold nanoparticles individually by ascorbic acid. And then we examine the peroxidase-mimic activity of these nanoparticles with different metal and deposition shell thickness by the color change of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The results showthat the peroxidase-mimic activity of hollow gold nanoparticles is significantly enhanced by deposition of Au, Pt or Pd atoms onto the surface.
誌謝 I
中文摘要 II
Abstract IV
圖目錄 VI
第一章 序論 1
1.1 前言 1
1.2 論文架構 2
第二章 文獻回顧 3
2.1 合成金屬奈米粒子(metal nanoparticles) 3
2.1.1 合成實心金奈米粒子(solid gold nanoparticles, SGNs) 3
2.1.2 合成銀奈米粒子(silver nanoparticles, AgNPs) 4
2.1.3 合成中空金奈米粒子(hollow gold nanoparticles, HGNs) 5
2.2 金屬奈米粒子的物化性質 8
2.2.1 光學性質 8
2.2.2 催化性質 11
2.3 金屬奈米粒子生物毒性之探討 13
2.3.1 金奈米粒子之生物毒性探討 13
2.3.2 銀奈米粒子的生物毒性探討 14
2.3.3 鉑/鈀奈米粒子的生物毒性 15
2.4 金屬奈米粒子於生醫工程領域上之應用 17
2.4.1 藥物制放(Drug delivery system, DDS) 17
2.4.2 光熱治療(Photothermal therapy, PTT) 18
2.4.3 光動力治療(Photodynamic therapy, PDT) 21
2.4.4 影像顯影功能(Biomedical images) 23
第三章 製備低生物毒性之多孔洞中空金奈米框 25
3.1 研究目的 25
3.2 研究方法 27
3.3結果與討論 33
3.3.1 奈米粒子的形貌探討 33
3.3.2 奈米粒子的光學性質 41
3.3.3 穩定性測試 44
3.3.4 多孔洞中空金奈米框的細胞毒性評估 50
3.3.5 多孔洞中空金奈米框對細胞內自由基的影響 53
3.3.6 多孔洞中空金奈米框在C57BL/6小鼠體內的生物分布 54
3.3.7 多孔洞中空金奈米框對C57BL/6小鼠臟器的影響 55
3.3.8 多孔洞中空金奈米框對C57BL/6小鼠肝指數的影響 57
3.4 結論 60
第四章 包覆不同金屬之中空金奈米粒子之催化性質探討 61
4.1 研究目的 61
4.2 研究方法 63
4.3 結果與討論 65
4.3.1 包覆不同金屬的中空金奈米粒子之形貌探討 65
4.3.2 包覆不同金屬的中空金奈米粒子之光學性質 67
4.3.3 包覆不同金屬的中空金奈米粒子的催化性質 68
4.4 結論 69
第五章 總結 72
參考文獻 73
1. Turkevich, J. and H.H. Hubbell, Low Angle X-Ray Diffraction of Colloidal Gold and Carbon Black. Journal of the American Chemical Society, 1951. 73(1): p. 1-7.
2. Gao, C.B., et al., One-step seeded growth of Au nanoparticles with widely tunable sizes. Nanoscale, 2012. 4(9): p. 2875-2878.
3. Jana, N.R., L. Gearheart, and C.J. Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. Journal of Physical Chemistry B, 2001. 105(19): p. 4065-4067.
4. Khlebtsov, N. and L. Dykman, Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chemical Society Reviews, 2011. 40(3): p. 1647-1671.
5. Wang, Y., et al., Synthesis of Ag Nanocubes 18-32 nm in Edge Length: The Effects of Polyol on Reduction Kinetics, Size Control, and Reproducibility. Journal of the American Chemical Society, 2013. 135(5): p. 1941-1951.
6. Wang, Y., et al., Synthesis of Silver Octahedra with Controlled Sizes and Optical Properties via Seed-Mediated Growth. Acs Nano, 2013. 7(5): p. 4586-4594.
7. Oldenburg, S.J., et al., Infrared extinction properties of gold nanoshells. Applied Physics Letters, 1999. 75(19): p. 2897-2899.
8. Shi, W.L., et al., Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir, 2005. 21(4): p. 1610-1617.
9. Ye, M.M., et al., Preparation of SiO2@Au@TiO2 core-shell nanostructures and their photocatalytic activities under visible light irradiation. Chemical Engineering Journal, 2013. 226: p. 209-216.
10. Sun, Y.G. and Y.N. Xia, Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Analytical Chemistry, 2002. 74(20): p. 5297-5305.
11. Sun, Y.G., B.T. Mayers, and Y.N. Xia, Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Letters, 2002. 2(5): p. 481-485.
12. Liang, H.P., et al., Gold hollow nanospheres: Tunable surface plasmon resonance controlled by interior-cavity sizes. Journal of Physical Chemistry B, 2005. 109(16): p. 7795-7800.
13. Walters, G. and I.P. Parkin, The incorporation of noble metal nanoparticles into host matrix thin films: synthesis, characterisation and applications. Journal of Materials Chemistry, 2009. 19(5): p. 574-590.
14. Yguerabide, J. and E.E. Yguerabide, Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications - I. Theory. Analytical Biochemistry, 1998. 262(2): p. 137-156.
15. Orendorff, C.J., T.K. Sau, and C.J. Murphy, Shape-dependent plasmon-resonant gold nanoparticles. Small, 2006. 2(5): p. 636-639.
16. Novak, J.P., et al., Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Analytical Chemistry, 2001. 73(23): p. 5758-5761.
17. Caruso, R.A. and M. Antonietti, Sol-gel nanocoating: An approach to the preparation of structured materials. Chemistry of Materials, 2001. 13(10): p. 3272-3282.
18. Kubo, S., et al., Tunability of the refractive index of gold nanoparticle dispersions. Nano Letters, 2007. 7(11): p. 3418-3423.
19. Hao, E., et al., Optical properties of metal nanoshells. Journal of Physical Chemistry B, 2004. 108(4): p. 1224-1229.
20. Moores, A. and F. Goettmann, The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New Journal of Chemistry, 2006. 30(8): p. 1121-1132.
21. Doremus, R.H., Optical properties of small clusters of silver and gold atoms. Langmuir, 2002. 18(6): p. 2436-2437.
22. Bratlie, K.M., et al., Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Letters, 2007. 7(10): p. 3097-3101.
23. Bashyam, R. and P. Zelenay, A class of non-precious metal composite catalysts for fuel cells. Nature, 2006. 443(7107): p. 63-66.
24. Christopher, P. and S. Linic, Shape- and Size-Specific Chemistry of Ag Nanostructures in Catalytic Ethylene Epoxidation. Chemcatchem, 2010. 2(1): p. 78-83.
25. Gao, L.Z., et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2007. 2(9): p. 577-583.
26. Haruta, M., et al., Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon-Monoxide. Journal of Catalysis, 1989. 115(2): p. 301-309.
27. Ueda, A., T. Oshima, and M. Haruta, Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides. Applied Catalysis B-Environmental, 1997. 12(2-3): p. 81-93.
28. Landon, P., et al., Direct synthesis of hydrogen peroxide from H-2 and O-2 using Pd and Au catalysts. Physical Chemistry Chemical Physics, 2003. 5(9): p. 1917-1923.
29. Jv, Y., B.X. Li, and R. Cao, Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chemical Communications, 2010. 46(42): p. 8017-8019.
30. Liu, Y., et al., pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale, 2014. 6(20): p. 11904-11910.
31. Hu, X.N., et al., Au@PtAg core/shell nanorods: tailoring enzyme-like activities via alloying. Rsc Advances, 2013. 3(17): p. 6095-6105.
32. Kelkar, S.S. and T.M. Reineke, Theranostics: Combining Imaging and Therapy. Bioconjugate Chemistry, 2011. 22(10): p. 1879-1903.
33. Oberdorster, G., V. Stone, and K. Donaldson, Toxicology of nanoparticles: A historical perspective. Nanotoxicology, 2007. 1(1): p. 2-25.
34. Connor, E.E., et al., Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005. 1(3): p. 325-327.
35. Pan, Y., et al., Size-dependent cytotoxicity of gold nanoparticles. Small, 2007. 3(11): p. 1941-1949.
36. AshaRani, P.V., et al., Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. Acs Nano, 2009. 3(2): p. 279-290.
37. Lee, Y.-H., et al., Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials, 2014. 35(16): p. 4706-4715.
38. Shi, J., et al., Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-κB pathways. Biomaterials, 2014. 35(24): p. 6657-6666.
39. Kittler, S., et al., Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions. Chemistry of Materials, 2010. 22(16): p. 4548-4554.
40. De Jong, W.H., et al., Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials, 2013. 34(33): p. 8333-8343.
41. Yamagishi, Y., et al., Acute and chronic nephrotoxicity of platinum nanoparticles in mice. Nanoscale Research Letters, 2013. 8.
42. Katsumi, H., et al., Pharmacokinetics and preventive effects of platinum nanoparticles as reactive oxygen species scavengers on hepatic ischemia/reperfusion injury in mice. Metallomics, 2014. 6(5): p. 1050-1056.
43. Jaeschke, H., Reactive Oxygen and Ischemia Reperfusion Injury of the Liver. Chemico-Biological Interactions, 1991. 79(2): p. 115-136.
44. Adams, C.P., et al., Size-Dependent Antimicrobial Effects of Novel Palladium Nanoparticles. Plos One, 2014. 9(1).
45. Liu, T.Z., S.D. Lee, and R.S. Bhatnagar, Toxicity of Palladium. Toxicology Letters, 1979. 4(6): p. 469-473.
46. Dumas, A. and P. Couvreur, Palladium: a future key player in the nanomedical field? Chemical Science, 2015. 6(4): p. 2153-2157.
47. Mirkin, C.A., et al., A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996. 382(6592): p. 607-609.
48. Jang, H., et al., Facile Synthesis and Intraparticle Self-Catalytic Oxidation of Dextran-Coated Hollow Au-Ag Nanoshell and Its Application for Chemo-Thermotherapy. Acs Nano, 2014. 8(1): p. 467-475.
49. Moon, G.D., et al., A New Theranostic System Based on Gold Nanocages and Phase-Change Materials with Unique Features for Photoacoustic Imaging and Controlled Release. Journal of the American Chemical Society, 2011. 133(13): p. 4762-4765.
50. Yang, J.P., et al., Spatially Confined Fabrication of Core-Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release. Chemistry of Materials, 2013. 25(15): p. 3030-3037.
51. Wust, P., et al., Hyperthermia in combined treatment of cancer. Lancet Oncology, 2002. 3(8): p. 487-497.
52. Huang, X., et al., Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. Journal of the American Chemical Society, 2006. 128(6): p. 2115-2120.
53. Hirsch, L.R., et al., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(23): p. 13549-13554.
54. Chen, J.Y., et al., Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Letters, 2007. 7(5): p. 1318-1322.
55. Zhang, Z.J., et al., Near Infrared Laser-Induced Targeted Cancer Therapy Using Thermoresponsive Polymer Encapsulated Gold Nanorods. Journal of the American Chemical Society, 2014. 136(20): p. 7317-7326.
56. Choi, M.-R., et al., Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse. Cancer Nanotechnology, 2012. 3(1-6): p. 47-54.
57. Trinidad, A.J., et al., Combined Concurrent Photodynamic and Gold Nanoshell Loaded Macrophage-Mediated Photothermal Therapies: An In Vitro Study on Squamous Cell Head and Neck Carcinoma. Lasers in Surgery and Medicine, 2014. 46(4): p. 310-318.
58. Chu, Z., et al., Surface plasmon enhanced drug efficacy using core-shell Au@SiO2 nanoparticle carrier. Nanoscale, 2013. 5(8): p. 3406-3411.
59. Li, Y.Y., et al., Localized Electric Field of Plasmonic Nanoplatform Enhanced Photodynamic Tumor Therapy. Acs Nano, 2014. 8(11): p. 11529-11542.
60. Vankayala, R., et al., Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Biomaterials, 2014. 35(21): p. 5527-5538.
61. Gao, L., et al., Plasmon-Mediated Generation of Reactive Oxygen Species from Near-Infrared Light Excited Gold Nanocages for Photodynamic Therapy in Vitro. ACS Nano, 2014. 8(7): p. 7260-7271.
62. Ke, H., et al., Gold Nanoshelled Liquid Perfluorocarbon Nanocapsules for Combined Dual Modal Ultrasound/CT Imaging and Photothermal Therapy of Cancer. Small, 2014. 10(6): p. 1220-1227.
63. Kim, C., et al., In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages. Acs Nano, 2010. 4(8): p. 4559-4564.
64. Wu, X., et al., High-Photoluminescence-Yield Gold Nanocubes: For Cell Imaging and Photothermal Therapy. Acs Nano, 2010. 4(1): p. 113-120.
65. Gao, N., et al., Shape-Dependent Two-Photon Photoluminescence of Single Gold Nanoparticles. The Journal of Physical Chemistry C, 2014. 118(25): p. 13904-13911.
66. Popovtzer, R., et al., Targeted Gold Nanoparticles Enable Molecular CT Imaging of Cancer. Nano Letters, 2008. 8(12): p. 4593-4596.
67. Mahmoud, M.A. and M.A. El-Sayed, Gold Nanoframes: Very High Surface Plasmon Fields and Excellent Near-Infrared Sensors. Journal of the American Chemical Society, 2010. 132(36): p. 12704-12710.
68. Lu, X.M., et al., Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)(3) or NH4OH. Nano Letters, 2007. 7(6): p. 1764-1769.
69. Wan, D.H., et al., Robust Synthesis of Gold Cubic Nanoframes through a Combination of Galvanic Replacement, Gold Deposition, and Silver Dealloying. Small, 2013. 9(18): p. 3111-3117.
70. Jang, H. and D.H. Min, Spherically-Clustered Porous Au-Ag Alloy Nanoparticle Prepared by Partial Inhibition of Galvanic Replacement and Its Application for Efficient Multimodal Therapy. Acs Nano, 2015. 9(3): p. 2696-2703.
71. Seglen, P.O., Preparation of isolated rat liver cells, in: D.M. Prescott (Ed.). Methods Cell Biology. Vol. 13. 1976, New York: Academic Press. 29-83.
72. Skrabalak, S.E., et al., Gold nanocages for biomedical applications. Advanced Materials, 2007. 19(20): p. 3177-3184.
73. Goodman, A.M., et al., The Surprising in Vivo Instability of Near-IR-Absorbing Hollow Au-Ag Nanoshells. Acs Nano, 2014. 8(4): p. 3222-3231.
74. Xiao, J.W., et al., Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. Nanoscale, 2014. 6(8): p. 4345-4351.
75. Liu, J.Y., et al., Controlled Release of Biologically Active Silver from Nanosilver Surfaces. Acs Nano, 2010. 4(11): p. 6903-6913.
76. Issaq, H.J., Z. Xiao, and T.D. Veenstra, Serum and Plasma Proteomics. Chemical Reviews, 2007. 107(8): p. 3601-3620.
77. Kim, I.-Y., et al., Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine: Nanotechnology, Biology and Medicine, 2015. 11(6): p. 1407-1416.
78. Padmos, J.D., et al., Correlating the Atomic Structure of Bimetallic Silver-Gold Nanoparticles to Their Antibacterial and Cytotoxic Activities. Journal of Physical Chemistry C, 2015. 119(13): p. 7472-7482.
79. Kim, D., et al., Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging (vol 129, pg 7661, 2007). Journal of the American Chemical Society, 2007. 129(41): p. 12585-12585.
80. Liu, X.S., et al., Mussel-Inspired Polydopamine: A Biocompatible and Ultrastable Coating for Nanoparticles in Vivo. Acs Nano, 2013. 7(10): p. 9384-9395.
81. De Matteis, V., et al., Negligible particle-specific toxicity mechanism of silver nanoparticles: The role of Ag+ ion release in the cytosol. Nanomedicine-Nanotechnology Biology and Medicine, 2015. 11(3): p. 731-739.
82. Piao, M.J., et al., Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicology Letters, 2011. 201(1): p. 92-100.
83. Shi, J.P., et al., Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-kappa B pathways. Biomaterials, 2014. 35(24): p. 6657-6666.
84. Ahamed, M., et al., DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology, 2008. 233(3): p. 404-410.
85. Xue, Y., et al., Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. Journal of Applied Toxicology, 2012. 32(11): p. 890-899.
86. Sadauskas, E., et al., Kupffer cells are central in the removal of nanoparticles from the organism. Particle and Fibre Toxicology, 2007. 4: p. 10-10.
87. Zhao, X.Y., et al., Pd-Ag alloy nanocages: integration of Ag plasmonic properties with Pd active sites for light-driven catalytic hydrogenation. Journal of Materials Chemistry A, 2015. 3(18): p. 9390-9394.
88. Li, J.N., et al., Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials, 2015. 48: p. 37-44.
89. Fan, F.R., et al., Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society, 2008. 130(22): p. 6949-+.
90. Zhang, K., et al., Formation of PdPt Alloy Nanodots on Gold Nanorods: Tuning Oxidase-like Activities via Composition. Langmuir, 2011. 27(6): p. 2796-2803.
91. Henle, E.S. and S. Linn, Formation, prevention, and repair of DNA damage by iron hydrogen peroxide. Journal of Biological Chemistry, 1997. 272(31): p. 19095-19098.
92. Polytarchou, C., M. Hatziapostolou, and E. Papadimitriou, Hydrogen peroxide stimulates proliferation and migration of human prostate cancer cells through activation of activator protein-1 and up-regulation of the heparin affin regulatory peptide gene. Journal of Biological Chemistry, 2005. 280(49): p. 40428-40435.
93. Mizutani, H., et al., Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sciences, 2005. 76(13): p. 1439-1453.
94. Slowing, I.I., et al., Mesoporous Silica Nanoparticles for Reducing Hemolytic Activity Towards Mammalian Red Blood Cells. Small, 2009. 5(1): p. 57-62.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *