帳號:guest(3.144.224.210)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉家瑜
作者(外文):Liu, Jia Yu
論文名稱(中文):發展以CXCR4作為靶向之脂質奈米粒子運送VEGF siRNA以調節肝癌腫瘤微環境並達到有效的抗腫瘤效果
論文名稱(外文):CXCR4 Targeted Lipid-Based Nanoparticles Delivering VEGF siRNA Modulate Tumor Microenvironment and Achieve Potent Anti-tumor Response in Liver Cancer
指導教授(中文):陳韻晶
指導教授(外文):Chen, Yun Ching
口試委員(中文):趙麗洋
曾昱程
口試委員(外文):Chau, Lee Young
Tseng, Yu Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:102038506
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:67
中文關鍵詞:腫瘤標靶奈米粒子癌症治療基因傳遞腫瘤微環境抗血管新生療法
外文關鍵詞:tumor-targeted nanoparticlessiRNA deliverycancer therapytumor microenvironmentanti-angiogenic therapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:63
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,抗血管新生療法 (anti-angiogenic therapy) 已成為一種具展望性之對抗肝癌 (HCC; hepatocellular carcinoma) 的治療策略。然而目前唯一臨床核准用來治療晚期肝癌的抗血管新生藥物-索拉菲尼 (sorafenib) 在治療肝癌過程中對人體正常組織會產生相當程度的毒性;另外,腫瘤組織亦會對抗血管新生療法產生抗藥性使得治療效果下降。由於在多數的HCC細胞中被發現CXCR4 (C-X-C chemokine receptor type 4) 的過度表現,因此在本研究中,我們發展以CXCR4作為靶向之脂質奈米粒子 (NP) 去專一性地運送VEGF (vascular endothelial growth factor) siRNA (small interfering RNA)至肝癌腫瘤組織中來當作替代的抗血管新生策略;此外,我們將CXCR4的拮抗劑AMD3100加入奈米粒子中,同時達到標靶腫瘤細胞以及敏化抗血管新生療法的功能。
我們的研究結果顯示出利用AMD3100修飾的奈米粒子 (AMD-NPs) 能夠有效地將VEGF siRNA運送到肝癌腫瘤組織中並且無論在細胞或是動物實驗中都能夠降低VEGF蛋白的表現。即使當進行抗血管新生治療後將導致缺氧環境的產生而使得SDF-1α/CXCR4軸系統的提升,藉由AMD-NPs去抑制CXCR4並合併傳統的索拉菲尼或是VEGF siRNA的治療得以預防腫瘤相關巨噬細胞 (TAMs) 的浸潤 (infiltration)。這樣的合併療法對於抑制原發性以及轉移的腫瘤成長也具有加乘性的療效。
總的來說,這個具腫瘤標靶能力的多功能性AMD-NPs能夠同時運送VEGF siRNA以及AMD3100而能有效抑制腫瘤對於抗血管新生療法的抗藥性,也因此能夠延緩肝癌腫瘤的成長。
Anti-angiogenic therapy has recently emerged as a highly promising therapeutic strategy for treating hepatocellular carcinoma (HCC). However, the only clinically approved systemic anti-angiogenic agent for advanced HCC is sorafenib, which exerts considerable toxicity. Moreover, acquired resistance to anti-angiogenic therapy often develops and restricts the therapeutic efficacy of this treatment. Hence, due to the overexpression of CXCR4 (C-X-C chemokine receptor type 4) in most type of HCC, in this study, we develop a CXCR4-targeted lipid-based nanoparticle (NP) formulation to specifically deliver VEGF (vascular endothelial growth factor) siRNA (small interfering RNA) as an anti-angiogenic substance into HCC. AMD3100, a CXCR4 antagonist, is added into NPs to serve as both a targeting moiety and a sensitizer to anti-angiogenic therapy. We demonstrate that AMD-modified NPs (AMD-NPs) can efficiently deliver VEGF siRNAs into HCC and down-regulate VEGF expression in vitro and in vivo. Despite the up-regulation of the SDF-1α/CXCR4 axis upon the induction of hypoxia after anti-angiogenic therapy, CXCR4 inhibition by AMD-NPs in combination with either conventional sorafenib treatment or VEGF siRNA prevents the infiltration of tumor-associated macrophages. These dual treatments also induce synergistic anti-angiogenic effects and suppress local and distant tumor growth in HCC. In conclusion, the tumor-targeted multifunctional AMD-NPs that co-deliver VEGF siRNA and AMD3100 provide an effective approach for overcoming tumor evasion of anti-angiogenic therapy, leading to delayed tumor progression in HCC.
中文摘要 i
Abstract iii
總目錄 v
圖目錄 vii
表目錄 viii
縮寫目錄 ix
第一章 緒論 1
一、研究背景 1
1.1肝癌與其形成原因 1
1.2肝癌形成之內部機制 2
1.2.1發炎 (Inflammation) 3
1.2.2氧化壓力 (Oxidative stress) 4
1.2.3 腫瘤微環境 (Tumor microenvironment) 5
1.2.4缺氧 (Hypoxia) 7
1.2.5細胞訊息傳遞路徑 8
1.2.5.1 Wnt/β-catenin訊息傳遞路徑 8
1.2.5.2 p53訊息傳遞路徑 9
1.2.5.3 RAF/MEK/ERK訊息傳遞路徑 9
1.3現今治療肝癌之方式 10
1.4基因治療(gene therapy) 12
1.4.1病毒載體 13
1.4.2非病毒載體 14
二、研究動機與目的 16
第二章 實驗材料與方法 18
2.1所用材料 18
2.2細胞培養 18
2.3動物實驗 19
2.4製備AMD-NPs 19
2.5 AMD-NPs的定性 20
2.6 細胞存活率分析 21
2.7 細胞遷移能力分析 21
2.8 免疫螢光染色 22
2.9 細胞攝入研究與AMD3100競爭性的細胞攝入分析 23
2.10 利用流式細胞儀檢測細胞攝入能力 24
2.11 腫瘤攝入研究 24
2.12 奈米粒子的器官分布研究 24
2.13 蘇木素-伊紅(H&E; Hematoxylin and Eosin) 染色 25
2.14 基因靜默研究 25
2.15 以qRT-PCR (quantitative reverse transcription polymerase chain reaction) 的方式分析基因靜默的效果 27
2.16 肝毒性測試 28
2.17 統計分析方式 28
第三章 實驗結果 29
3.1 裝載siRNA之CXCR4靶向脂質奈米載體的製備與定性 29
3.2 在體內 (in vivo) 與體外 (in vitro) 實驗中利用AMD-NP調控腫瘤的微環境並敏化索拉菲尼對於肝癌的療效 30
3.3 在體內與體外實驗中使用AMD-NPs運送VEGF siRNA對於肝癌細胞顯著地造成基因靜默的效果 32
3.4 CXCR4的拮抗劑AMD3100同時作為「具標靶性的配體」以幫助siRNAs運送進入腫瘤中以及作為「治療性的藥劑」以調控腫瘤內微環境並敏化抗血管新生療法對肝癌腫瘤之療效 35
第四章 實驗討論與結論 37
第五章 圖表 41
第六章 參考文獻 59
1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A. Global cancer statistics, 2012. CA: a cancer journal for clinicians 2015;65(2):87-108.
2. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nature Reviews Cancer 2006;6(9):674-687.
3. Sherman M. Hepatocellular carcinoma: epidemiology, risk factors, and screening. 2004. p 143-154.
4. Badvie S. Hepatocellular carcinoma. Postgraduate Medical Journal 2000;76(891):4-11.
5. Severi T, van Malenstein H, Verslype C, van Pelt JF. Tumor initiation and progression in hepatocellular carcinoma: risk factors, classification, and therapeutic targets. Acta Pharmacologica Sinica 2010;31(11):1409-1420.
6. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134(6):1655-1669.
7. El–Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007;132(7):2557-2576.
8. Aravalli RN, Cressman EN, Steer CJ. Cellular and molecular mechanisms of hepatocellular carcinoma: an update. Archives of toxicology 2013;87(2):227-247.
9. Maeda S, Kamata H, Luo J-L, Leffert H, Karin M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005;121(7):977-990.
10. Elsharkawy AM, Mann DA. Nuclear factor‐κB and the hepatic inflammation‐fibrosis‐cancer axis. Hepatology 2007;46(2):590-597.
11. Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, Taub R. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 1996;274(5291):1379-1383.
12. Lee Y, Park U-S, Choi I, Yoon SK, Park YM, Lee YI. Human interleukin 6 gene is activated by hepatitis B virus-X protein in human hepatoma cells. Clinical Cancer Research 1998;4(7):1711-1717.
13. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews Cancer 2009;9(11):798-809.
14. Nakagawa H, Maeda S, Yoshida H, Tateishi R, Masuzaki R, Ohki T, Hayakawa Y, Kinoshita H, Yamakado M, Kato N. Serum IL‐6 levels and the risk for hepatocarcinogenesis in chronic hepatitis C patients: An analysis based on gender differences. International Journal of Cancer 2009;125(10):2264-2269.
15. Tilg H, Wilmer A, Vogel W, Herold M, Nölchen B, Judmaier G, Huber C. Serum levels of cytokines in chronic liver diseases. Gastroenterology 1992;103(1):264-274.
16. Wong VWS, Yu J, Cheng ASL, Wong GLH, Chan HY, Chu ESH, Ng EKO, Chan FKL, Sung JJY, Chan HLY. High serum interleukin‐6 level predicts future hepatocellular carcinoma development in patients with chronic hepatitis B. International journal of cancer 2009;124(12):2766-2770.
17. Han Y-P, Zhou L, Wang J, Xiong S, Garner WL, French SW, Tsukamoto H. Essential role of matrix metalloproteinases in interleukin-1-induced myofibroblastic activation of hepatic stellate cell in collagen. Journal of Biological Chemistry 2004;279(6):4820-4828.
18. Leonardi GC, Candido S, Cervello M, Nicolosi D, Raiti F, Travali S, Spandidos DA, Libra M. The tumor microenvironment in hepatocellular carcinoma (review). International journal of oncology 2012;40(6):1733-1747.
19. Balkwill F. Tumour necrosis factor and cancer. Nature Reviews Cancer 2009;9(5):361-371.
20. Chang Y-C, Chen T-C, Lee C-T, Yang C-Y, Wang H-W, Wang C-C, Hsieh S-L. Epigenetic control of MHC class II expression in tumor-associated macrophages by decoy receptor 3. Blood 2008;111(10):5054-5063.
21. Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R, Gould D, Ayhan A, Balkwill F. The inflammatory cytokine tumor necrosis factor-α generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer research 2007;67(2):585-592.
22. Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, Oshima M, Fujii C, Mukaida N. Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. The Journal of clinical investigation 2008;118(2):560.
23. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Reviews Immunology 2003;3(2):133-146.
24. Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A, Stiuso P, Abbruzzese A, Sperlongano R, Accardo M. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med 2011;9(1):171.
25. Shimoda R, Nagashima M, Sakamoto M, Yamaguchi N, Hirohashi S, Yokota J, Kasai H. Increased formation of oxidative DNA damage, 8-hydroxydeoxyguanosine, in human livers with chronic hepatitis. Cancer Research 1994;54(12):3171-3172.
26. Abel S, De Kock M, Van Schalkwyk D, Swanevelder S, Kew M, Gelderblom W. Altered lipid profile, oxidative status and hepatitis B virus interactions in human hepatocellular carcinoma. Prostaglandins, Leukotrienes and Essential Fatty Acids 2009;81(5):391-399.
27. Schrader J, Iredale JP. The inflammatory microenvironment of HCC–the plot becomes complex. Journal of hepatology 2011;54(5):853-855.
28. Wu S-D, Ma Y-S, Fang Y, Liu L-L, Fu D, Shen X-Z. Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer treatment reviews 2012;38(3):218-225.
29. Amann T, Bataille F, Spruss T, Mühlbauer M, Gäbele E, Schölmerich J, Kiefer P, Bosserhoff AK, Hellerbrand C. Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer science 2009;100(4):646-653.
30. Sancho‐Bru P, Juez E, Moreno M, Khurdayan V, Morales‐Ruiz M, Colmenero J, Arroyo V, Brenner DA, Ginès P, Bataller R. Hepatocarcinoma cells stimulate the growth, migration and expression of pro‐angiogenic genes in human hepatic stellate cells. Liver International 2010;30(1):31-41.
31. Pietras K, Östman A. Hallmarks of cancer: interactions with the tumor stroma. Experimental cell research 2010;316(8):1324-1331.
32. Mueller L, Goumas FA, Affeldt M, Sandtner S, Gehling UM, Brilloff S, Walter J, Karnatz N, Lamszus K, Rogiers X. Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. The American journal of pathology 2007;171(5):1608-1618.
33. Zhang Y, Yang B, Du Z, Bai T, Gao Y-T, Wang Y-J, Lou C, Wang F-M, Bai Y. Aberrant methylation of SPARC in human hepatocellular carcinoma and its clinical implication. World journal of gastroenterology: WJG 2012;18(17):2043.
34. Mantovani A, Germano G, Marchesi F, Locatelli M, Biswas SK. Cancer‐promoting tumor‐associated macrophages: New vistas and open questions. European journal of immunology 2011;41(9):2522-2525.
35. Benetti A, Berenzi A, Gambarotti M, Garrafa E, Gelati M, Dessy E, Portolani N, Piardi T, Giulini SM, Caruso A. Transforming growth factor-β1 and CD105 promote the migration of hepatocellular carcinoma–derived endothelium. Cancer research 2008;68(20):8626-8634.
36. Hamaguchi T, Iizuka N, Tsunedomi R, Hamamoto Y, Miyamoto T, Iida M, Tokuhisa Y, Sakamoto K, Takashima M, Tamesa T. Glycolysis module activated by hypoxia-inducible factor 1α is related to the aggressive phenotype of hepatocellular carcinoma. International journal of oncology 2008;33(4):725-731.
37. Murata K, Suzuki H, Okano H, Oyamada T, Yasuda Y, Sakamoto A. Hypoxia-induced des-γ-carboxy prothrombin production in hepatocellular carcinoma. International journal of oncology 2010;36(1):161-170.
38. Yan W, Fu Y, Tian D, Liao J, Liu M, Wang B, Xia L, Zhu Q, Luo M. PI3 kinase/Akt signaling mediates epithelial–mesenchymal transition in hypoxic hepatocellular carcinoma cells. Biochemical and biophysical research communications 2009;382(3):631-636.
39. Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology 2008;48(6):2047-2063.
40. Polakis P. Wnt signaling in cancer. Cold Spring Harbor perspectives in biology 2012;4(5):a008052.
41. Anson M, Crain-Denoyelle A-M, Baud V, Chereau F, Gougelet A, Terris B, Yamagoe S, Colnot S, Viguier M, Perret C. Oncogenic β-catenin triggers an inflammatory response that determines the aggressiveness of hepatocellular carcinoma in mice. The Journal of clinical investigation 2012;122(2):586.
42. Luedde T, Schwabe RF. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology 2011;8(2):108-118.
43. Stegh AH. Targeting the p53 signaling pathway in cancer therapy-the promises, challenges and perils. Expert opinion on therapeutic targets 2012;16(1):67-83.
44. Liu J, Ma Q, Zhang M, Wang X, Zhang D, Li W, Wang F, Wu E. Alterations of TP53 are associated with a poor outcome for patients with hepatocellular carcinoma: evidence from a systematic review and meta-analysis. European journal of cancer 2012;48(15):2328-2338.
45. Nita ME, Alves VAF, Carrilho FJ, Ono-Nita SK, Mello ESd, Gama-Rodrigues JJ. Molecular aspects of hepatic carcinogenesis. Revista do Instituto de Medicina Tropical de Sao Paulo 2002;44(1):39-48.
46. Yam J, Wong C, Ng I. Molecular and functional genetics of hepatocellular carcinoma. Frontiers in bioscience (Scholar edition) 2009;2:117-134.
47. Roring M, Brummer T. Aberrant B-Raf Signaling in Human Cancer− 10 Years from Bench to Bedside. Critical Reviews™ in Oncogenesis 2012;17(1).
48. Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008;48(4):1312-1327.
49. Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M, Carter C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer research 2006;66(24):11851-11858.
50. Shimizu S, Takehara T, Hikita H, Kodama T, Tsunematsu H, Miyagi T, Hosui A, Ishida H, Tatsumi T, Kanto T. Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. International Journal of Cancer 2012;131(3):548-557.
51. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, de Oliveira AC, Santoro A, Raoul J-L, Forner A. Sorafenib in advanced hepatocellular carcinoma. New England Journal of Medicine 2008;359(4):378-390.
52. Chen PJ, Furuse J, Han KH, Hsu C, Lim HY, Moon H, Qin S, Ye SL, Yeoh EM, Yeo W. Issues and controversies of hepatocellular carcinoma‐targeted therapy clinical trials in Asia: experts' opinion. Liver International 2010;30(10):1427-1438.
53. Zhai B, Sun X-Y. Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World journal of hepatology 2013;5(7):345.
54. Gedaly R, Angulo P, Hundley J, Daily MF, Chen C, Koch A, Evers BM. PI-103 and sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. Anticancer research 2010;30(12):4951-4958.
55. Chen K-F, Chen H-L, Tai W-T, Feng W-C, Hsu C-H, Chen P-J, Cheng A-L. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. Journal of Pharmacology and Experimental Therapeutics 2011;337(1):155-161.
56. Bottsford-Miller JN, Coleman RL, Sood AK. Resistance and escape from antiangiogenesis therapy: clinical implications and future strategies. Journal of Clinical Oncology 2012;30(32):4026-4034.
57. Liu L-p, Ho RL, Chen GG, Lai PB. Sorafenib inhibits hypoxia-inducible factor-1α synthesis: implications for antiangiogenic activity in hepatocellular carcinoma. Clinical cancer research 2012;18(20):5662-5671.
58. Murakami M, Zhao S, Zhao Y, Chowdhury NF, Yu W, Nishijima K-I, Takiguchi M, Tamaki N, Kuge Y. Evaluation of changes in the tumor microenvironment after sorafenib therapy by sequential histology and 18F-fluoromisonidazole hypoxia imaging in renal cell carcinoma. International journal of oncology 2012;41(5):1593-1600.
59. Chen Y, Huang Y, Reiberger T, Duyverman AM, Huang P, Samuel R, Hiddingh L, Roberge S, Koppel C, Lauwers GY. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal‐derived factor 1 alpha/C‐X‐C receptor type 4 axis and myeloid differentiation antigen–positive myeloid cell infiltration in mice. Hepatology 2014;59(4):1435-1447.
60. Liang Y, Zheng T, Song R, Wang J, Yin D, Wang L, Liu H, Tian L, Fang X, Meng X. Hypoxia‐mediated sorafenib resistance can be overcome by EF24 through Von Hippel‐Lindau tumor suppressor‐dependent HIF‐1α inhibition in hepatocellular carcinoma. Hepatology 2013;57(5):1847-1857.
61. Petrini I, Lencioni M, Ricasoli M, Iannopollo M, Orlandini C, Oliveri F, Bartolozzi C, Ricci S. Phase II trial of sorafenib in combination with 5-fluorouracil infusion in advanced hepatocellular carcinoma. Cancer chemotherapy and pharmacology 2012;69(3):773-780.
62. Hsu C-H, Shen Y-C, Lin Z-Z, Chen P-J, Shao Y-Y, Ding Y-H, Hsu C, Cheng A-L. Phase II study of combining sorafenib with metronomic tegafur/uracil for advanced hepatocellular carcinoma. Journal of hepatology 2010;53(1):126-131.
63. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nature Reviews Genetics 2014;15(8):541-555.
64. Robbins PD, Ghivizzani SC. Viral vectors for gene therapy. Pharmacology & therapeutics 1998;80(1):35-47.
65. Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M. Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 2013;36(1):1-22.
66. Barajas M, Mazzolini G, Genové G, Bilbao R, Narvaiza I, Schmitz V, Sangro B, Melero I, Qian C, Prieto J. Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12. Hepatology 2001;33(1):52-61.
67. Shen A, Liu S, Yu W, Deng H, Li Q. p53 Gene Therapy‐Based Transarterial Chemoembolization for Unresectable Hepatocelluar Carcinoma: A Prospective Cohort Study. Journal of gastroenterology and hepatology 2015.
68. Pathak A, Patnaik S, Gupta KC. Recent trends in non‐viral vector‐mediated gene delivery. Biotechnology journal 2009;4(11):1559-1572.
69. Gansbacher B. Report of a second serious adverse event in a clinical trial of gene therapy for X‐linked severe combined immune deficiency (X‐SCID). The journal of gene medicine 2003;5(3):261-262.
70. Mumper RJ, Duguid JG, Anwer K, Barron MK, Nitta H, Rolland AP. Polyvinyl derivatives as novel interactive polymers for controlled gene delivery to muscle. Pharmaceutical research 1996;13(5):701-709.
71. Kawabata K, Takakura Y, Hashida M. The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharmaceutical research 1995;12(6):825-830.
72. Houk BE, Hochhaus G, Hughes JA. Kinetic modeling of plasmid DNA degradation in rat plasma. AAPS PharmSci 1999;1(3):15-20.
73. Takahashi Y, Yamaoka K, Nishikawa M, Takakura Y. Quantitative and temporal analysis of gene silencing in tumor cells induced by small interfering RNA or short hairpin RNA expressed from plasmid vectors. Journal of pharmaceutical sciences 2009;98(1):74-80.
74. Shen H, Sun T, Ferrari M. Nanovector delivery of siRNA for cancer therapy. Cancer gene therapy 2012;19(6):367-373.
75. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004;432(7014):173-178.
76. Pardee AD, Butterfield LH. Immunotherapy of hepatocellular carcinoma: unique challenges and clinical opportunities. Oncoimmunology 2012;1(1):48-55.
77. Ramanathan R, Belani C, Singh D, Tanaka Jr M, Lenz H, Yen Y, Kindler H, Iqbal S, Longmate J, Gandara D. Phase II study of lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase 1 and 2 (Her2/Neu) in patients (pts) with advanced biliary tree cancer (BTC) or hepatocellular cancer (HCC). A California Consortium (CCC-P) Trial. 2006. p 4010.
78. Tofilon PJ, Basic I, Milas L. Prediction of in vivo tumor response to chemotherapeutic agents by the in vitro sister chromatid exchange assay. Cancer research 1985;45(5):2025-2030.
79. Chen Y, Huang Y, Reiberger T, Duyverman AM, Huang P, Samuel R, Hiddingh L, Roberge S, Koppel C, Lauwers GY and others. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology 2014;59(4):1435-47.
80. Kim W, Seong J, Oh HJ, Koom WS, Choi K-J, Yun C-O. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma. Journal of radiation research 2011;52(5):646-654.
81. Chen Y, Wu JJ, Huang L. Nanoparticles targeted with NGR motif deliver c-myc siRNA and doxorubicin for anticancer therapy. Molecular Therapy 2010;18(4):828-834.
82. Cui Z, Han S-J, Vangasseri DP, Huang L. Immunostimulation mechanism of LPD nanoparticle as a vaccine carrier. Molecular pharmaceutics 2005;2(1):22-28.
83. King J. The transferases-alanine and aspartate transaminases. Practical clinical enzymology 1965:121-138.
84. Bowers GN, McComb RB. A continuous spectrophotometric method for measuring the activity of serum alkaline phosphatase. Clinical Chemistry 1966;12(2):70-89.
85. Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 2010;16(11):2927-31.
86. Xiang ZL, Zeng ZC, Tang ZY, Fan J, Zhuang PY, Liang Y, Tan YS, He J. Chemokine receptor CXCR4 expression in hepatocellular carcinoma patients increases the risk of bone metastases and poor survival. BMC Cancer 2009;9:176.
87. Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, Ochiai H, Kitahara S, Unan EC, Reddy TP and others. CXCR4 inhibition in tumor microenvironment facilitates anti-PD-1 immunotherapy in sorafenib-treated HCC in mice. Hepatology 2014.
88. Wu XZ, Xie GR, Chen D. Hypoxia and hepatocellular carcinoma: The therapeutic target for hepatocellular carcinoma. Journal of gastroenterology and hepatology 2007;22(8):1178-1182.
89. Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A, Zazzeroni F, Alesse E. The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int 2013;2013:187204.
90. Zhou D, Huang C, Kong L, Li J. Novel therapeutic target of hepatocellular carcinoma by manipulation of macrophage colony-stimulating factor/tumor-associated macrophages axis in tumor microenvironment. Hepatol Res 2014;44(10):E318-9.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *