帳號:guest(18.118.19.189)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):金川
作者(外文):Jin, Chuan
論文名稱(中文):可植入式產氧系統用於克服缺氧癌組織抗化療藥物的評估
論文名稱(外文):An Implantable Depot Capable of Generating Oxygen for Overcoming Hypoxia-induced Resistance to Doxorubicin
指導教授(中文):宋信文
指導教授(外文):Sung, Hsing-Wen
口試委員(中文):劉培毅
宋信文
廖子嫻
邱雅玲
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:102038466
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:40
中文關鍵詞:缺氧抗藥性產氧系統可植入式多柔比星
外文關鍵詞:hypoxiachemotherapeutic resistanceoxygen generating systemimplantable depotdoxorubicin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:136
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
癌症為人類主要死亡原因之一,而晚期癌症往往因為腫瘤過大無法直接摘除,需要輔以化學治療,放射線治療等的治療方法,抑制腫瘤生長減小體積。而化療手段往往不能達到預期效果的原因是部分的抗癌藥物是藉由氧氣來產生自由基,並藉由自由基攻擊癌細胞來達到治療效果。但在癌細胞增殖過快導致腫瘤內部嚴重缺氧的情況下,抗癌藥物就無法產生足夠的自由基,導致癌細胞在腫瘤內部的缺氧環境下抗藥性增高,進而無法達到預期的療效。在此研究我們藉由一可植入式持續產氧系統來減緩癌細胞內部的缺氧情形,降低藥物因為缺氧而造成的治療阻力,進而提升治療效果。此產氧系統是利用褐藻酸鈉和鈣離子的交聯來包覆過氧化鈣和過氧化氫酶形成微球體,過氧化鈣與水接觸後會開始分解,過氧化氫在過氧化氫酶的催化下會大量地產生氧氣。在有氧環境及缺氧環境下進行細胞實驗,由實驗結果可以發現缺氧環境確實會降低癌細胞對藥物的敏感度,而當癌細胞在缺氧環境下,與此產氧系統共培養,抗癌藥物確實能夠產生較多自由基,進而殺死較多的癌細胞。並且進一步藉由動物模型來驗證此產氧系統是否能夠提升化學治療效果,由實驗結果我們可以發現,此產氧系統確實能夠改善缺氧環境造成的抗藥性問題,並增加抗癌藥物的毒殺效果來達到更好的治療效果。
Complete resection is the only potentially curative treatment for late stage cancer. In general, however, resection is beneficial only when there is no distant spread of disease and when all tumor can be safely removed with an adequate hepatic remnant for recovery. Thus, adjuvant therapy, such as radiotherapy and chemotherapy, has been given to shrink the tumor. Recently, hypoxia has been described as an important factor to chemotherapeutic resistance, owing to the redox state, meaning that oxygen (O2) is required to generate ROS to be maximally cytotoxic. To address the above issue, an oxygen generating system was fabricated using alginate, having calcium peroxide as the oxygen generating source, which decompose hydrogen peroxide and release oxygen when contact with water. The decomposition rate could be increased by the addition of catalase, a common enzyme found in nearly all living organisms. This novel system was performed under two controlled conditions, normoxia and hypoxia. Optimization of microspheres, cytotoxicity of material and condition of the system were carried out specifically based on the responses observed from studies using Hep3B cells as a candidate. Particles are capable of sustainably release oxygen over 24 hours while the best cross-linking time during the gelation was found to be 10 minutes. It was observed that cells maintained high viability under hypoxic condition and found that doxorubicin-induced oxyradicals play a vital role in the development of drug resistance. However, this oxygen generating system has successfully reduced the chemotherapeutic resistance which induced by hypoxia and enhanced the chemotherapeutic efficacy of doxorubicin. These results suggest that the developed oxygen generating system is a highly promising approach in maximizing the therapeutic effectiveness with minimal side effects.
目錄
致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖索引 VI
公式索引 IX
第一章 緒論 1
1.1 癌症及其治療 1
1.2 腫瘤內的缺氧現象及治療抗性 2
1.3 高壓氧治療 HBO 3
1.4 過氧化氫H2O2與過氧化氫酶catalase的作用 4
1.5 研究目標 7
第二章 實驗材料及方法 10
2.1 實驗材料 10
2.2 CaO2-alginate微球的製備及表徵 10
2.2.1 CaO2-alginate微球的製備 10
2.2.2 體外缺氧環境的構建 11
2.2.3 氧氣釋放監測 12
2.2.4 H2O2 釋放及溶液pH值測定 12
2.2.5 CaO2的反應情形表徵 13
2.3 細胞實驗 13
2.3.1 材料毒性測試 13
2.3.2 CaO2-alginate 微球缺氧改善能力分析 13
2.3.3 DOX的細胞內積累及細胞抗藥性測試 14
2.3.4 關於DOX藥效增強的分析 15
2.3.5 ROS細胞內積累及細胞凋亡 15
2.4 動物實驗 16
2.4.1 建立缺氧腫瘤模型 16
2.4.2 腫瘤缺氧情形分析 16
2.4.3 關於動物實驗DOX藥效增強的分析 17
第三章 實驗結果與討論 19
3.1 CaO2-alginate微球的特徵及性質 19
3.1.1 CaO2-alginate微球的形態 19
3.1.2 氧氣釋放曲線 21
3.2 細胞實驗 23
3.2.1 材料毒性測試 23
3.2.2 產氧系統對缺氧狀態的改善 24
3.2.3 DOX的細胞內積累及治療抗性測試 26
3.2.4 產氧系統對於治療效果的增強 28
3.2.5 ROS細胞內積累及細胞凋亡 29
3.3 動物實驗 30
3.3.1 腫瘤缺氧情形改善 30
3.3.2 抗腫瘤治療效果 31
3.3.3 FDG攝取效率 33
3.3.4 腫瘤內部細胞形貌及細胞凋亡情形 34
第四章 結論 36
參考文獻 37
參考文獻
[1] Groner B. Introduction: The rationale for the development of targeted drugs in cancer therapy. Targeted Interference with Signal Transduction Events: Springer; 2007: 1-3.
[2] Lau CK, Yang ZF, Ho DW, Ng MN, Yeoh GC, Poon RT, et al. An Akt/hypoxia-inducible factor-1α/platelet-derived growth factor-BB autocrine loop mediates hypoxia-induced chemoresistance in liver cancer cells and tumorigenic hepatic progenitor cells. Clinical Cancer Research. 2009;15:3462-71.
[3] Tsochatzis EA, Fatourou E, O’Beirne J, Meyer T, Burroughs AK. Transarterial chemoembolization and bland embolization for hepatocellular carcinoma. World journal of gastroenterology 2014;20:3069-3077.
[4] D’ANGELICA, M., et al. The role of staging laparoscopy in hepatobiliary malignancy: prospective analysis of 401 cases. Annals of surgical oncology, 2003, 10.2: 183-189.
[5] MITRAGOTRI, Samir; BURKE, Paul A.; LANGER, Robert. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nature Reviews Drug Discovery, 2014;655-672.
[6] Yokoyama, Y., Nimura, Y., & Nagino, M. (2009). Advances in the treatment of pancreatic cancer: limitations of surgery and evaluation of new therapeutic strategies. Surgery today, 39(6), 466-475.
[7] Yang Y, Jin C, Li H, He Y, Liu Z, Bai L, et al. Improved radiosensitizing effect of the combination of etanidazole and paclitaxel for hepatocellular carcinoma in vivo. Experimental and therapeutic medicine. 2012;3:299-303.
[8] Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Letters. 2007;7:3065-70.
[9] Moen I, Stuhr LE. Hyperbaric oxygen therapy and cancer—a review. Targeted oncology. 2012;7:233-42.
[10] Malda J, Klein TJ, Upton Z. The roles of hypoxia in the in vitro engineering of tissues. Tissue engineering. 2007;13:2153-62.
[11] Greijer A, Van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. Journal of clinical pathology. 2004;57:1009-14.
[12] KIRKPATRICK, John P., et al. Elevated CAIX expression is associated with an increased risk of distant failure in early-stage cervical cancer. Biomarker insights, 2008, 3: 45-55.
[13] Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer treatment reviews. 2003;29:297-307.
[14] Mohindra JK, Rauth AM. Increased cell killing by metronidazole and nitrofurazone of hypoxic compared to aerobic mammalian cells. Cancer research. 1976;36:930-6.
[15] Wong CC-L, Kai AK-L, Ng IO-L. The impact of hypoxia in hepatocellular carcinoma metastasis. Frontiers of medicine. 2013:1-9.
[16] Koch S, Mayer F, Honecker F, Schittenhelm M, Bokemeyer C. Efficacy of cytotoxic agents used in the treatment of testicular germ cell tumours under normoxic and hypoxic conditions in vitro. British journal of cancer. 2003;89:2133-9.
[17] Teicher BA. Hypoxia and drug resistance. Cancer and Metastasis Reviews. 1994;13:139-68.
[18] Sinha BK, Mimnaugh EG. Free radicals and anticancer drug resistance: oxygen free radicals in the mechanisms of drug cytotoxicity and resistance by certain tumors. Free Radical Biology and Medicine. 1990;8:567-81.
[19] Bates DA, Winterbourn CC. Reactions of Adriamycin with haemoglobin. Superoxide dismutase indirectly inhibits reactions of the Adriamycin semiquinone. Biochem J. 1982;203:155-60.
[20] MOEN, Ingrid; STUHR, Linda EB. Hyperbaric oxygen therapy and cancer—a review. Targeted oncology, 2012, 7.4: 233-242.
[21] OGAWA, K., et al. Phase II trial of radiotherapy after hyperbaric oxygenation with chemotherapy for high-grade gliomas. British journal of cancer, 2006, 95.7: 862-868.
[22] Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nature reviews Molecular cell biology. 2007;8:722-8.
[23] Gupta, M. K., Meyer, T. A., Nelson, C. E., & Duvall, C. L. (2012). Poly (PS-b-DMA) micelles for reactive oxygen species triggered drug release. Journal of Controlled Release, 162(3), 591-598..
[24] Halliwell B, Gutteridge JM. Free radicals in biology and medicine: Oxford university press Oxford. 1999; 931-941.
[25] Wilhelm J, Frydrychova M, Vizek M. Hydrogen peroxide in the breath of rats: the effects of hypoxia and paraquat. Physiological Research. 1999;48:445-50.
[26] Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS letters. 2000;486:10-3.
[27] Ueda J-i, Saito N, Shimazu Y, Ozawa T. A comparison of scavenging abilities of antioxidants against hydroxyl radicals. Archives of biochemistry and biophysics. 1996;333:377-84.
[28] Undyala V, Terlecky SR, Vander Heide RS. Targeted intracellular catalase delivery protects neonatal rat myocytes from hypoxia-reoxygenation and ischemia-reperfusion injury. Cardiovascular Pathology. 2011;20:272-80.
[29] Matsumoto M, Kida K, Kondo K. Effects of polyols and organic solvents on thermostability of lipase. Journal of Chemical Technology and Biotechnology. 1997;70:188-92.
[30] Watts RJ, Teel AL. Chemistry of Modified Fenton’s Reagent (Catalyzed H 2 O 2 Propagations–CHP) for In Situ Soil and Groundwater Remediation. Journal of environmental engineering. 2005;131:612-22.
[31] CHANG, Chia-Wen; WANG, Meng-Jiy. Preparation of microfibrillated cellulose composites for sustained release of h2o2 or o2 for biomedical applications. ACS Sustainable Chemistry & Engineering, 2013, 1.9: 1129-1134.
[32] Harrison BS, Eberli D, Lee SJ, Atala A, Yoo JJ. Oxygen producing biomaterials for tissue regeneration. Biomaterials. 2007;28:4628-34.
[33] Oh SH, Ward CL, Atala A, Yoo JJ, Harrison BS. Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials. 2009;30:757-62.
[34] Buda F, Ensing B, Gribnau M, Baerends EJ. O2 evolution in the Fenton reaction. Chemistry-A European Journal. 2003;9:3436-44.
[35] Watts RJ, Foget MK, Kong S-H, Teel AL. Hydrogen peroxide decomposition in model subsurface systems. Journal of hazardous materials. 1999;69:229-43.
[36] Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials. 2013;6:1285-309.
[37] Simpliciano C, Clark L, Asi B, Chu N, Mercado M, Diaz S, et al. Cross-Linked Alginate Film Pore Size Determination Using Atomic Force Microscopy and Validation Using Diffusivity Determinations. Journal of Surface Engineered Materials and Advanced Technology. 2013;3:1-12.
[38] Lee P, Rogers M. Effect of calcium source and exposure-time on basic caviar spherification using sodium alginate. International Journal of Gastronomy and Food Science. 2012;1:96-100.
[39] Pedraza E, Coronel MM, Fraker CA, Ricordi C, Stabler CL. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proceedings of the National Academy of Sciences. 2012;109:4245-50.
[40] Krieg M-L. Impact of Oxygen-Release Material on Human Urine-Derived Stem Cells’ Differentiation and Proliferation in Hypoxic Condition In Vitro: Uppsala University. 2010;11-15;.
[41] Khodaveisi J, Banejad H, Afkhami A, Olyaie E, Lashgari S, Dashti R. Synthesis of calcium peroxide nanoparticles as an innovative reagent for in situ chemical oxidation. Journal of hazardous materials. 2011;192:1437-40.
[42] Ahn S, Lee H, Bonassar LJ, Kim G. Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying. Biomacromolecules. 2012;13:2997-3003.
[43] Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromolecular bioscience. 2006;6:623-33.
[44] Williams X. Vital Signs for Cancer: How to monitor, prevent and reverse the cancer process[M]. Hachette UK, 2010:320-321.
[45] Chilov D, Camenisch G, Kvietikova I, Ziegler U, Gassmann M, Wenger RH. Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1alpha. Journal of cell science. 1999;112:1203-12.
[46] Campos FC, Panis C, Rossi T, Victorino VJ, Cecchini AL, Cecchini R. Aspects related to oxidative stress-mediated toxicity of doxorubicin during chemotherapy treatment. Applied Cancer Research. 2012;32:21-5.
[47] Donkena KV, Young CY, Tindall DJ. Oxidative stress and DNA methylation in prostate cancer. Obstetrics and gynecology international. 2010;1-14.
[48] Groner B. Introduction: The rationale for the development of targeted drugs in cancer therapy. Targeted Interference with Signal Transduction Events: Springer; 2007. p. 1-3.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *