|
參考文獻 1.Yang, D.X.D, & Gamal, A.E., & Fowler, Boyd, & Tian, H. (1999), A 640×512 CMOS image sensor with ultrawide dynamic range floating-point pixel-level ADC, Solid-State Circuits, IEEE Journal, Volume 34, Issue 12, Pages 1821- 1834. 2.Kavadias, S., Dierickx, B., Scheffer, D., Alaerts, A., Uwaerts, D., & Bogaerts, J.(2000), A logarithmic response CMOS image sensor with on-chip calibration,Solid-State Circuits, IEEE Journal, Volume 35, Issue 8, Pages 1146- 1152. 3.Kwangho Yoon, Chanki Kim, Bumha Lee & Doyoung Lee(2002), A single-chip image sensor for mobile applications, Solid- State Circuits, IEEE Journal, Volume 37, Issue 12, Pages 1839-1845. 4.L. Chua and L. Yang(1988), Cellular Neural Networks: Theory, IEEE Trans. on Circuits and Systems, Volume 35, Issue 10, Pages 1257-1272. 5.L. Chua and L. Yang(1988), Cellular Neural Networks: Applications, IEEE Trans. On Circuits and Systems, Volume 35, Issue 10, Pages 1273-1290. 6.Wen-Chin Chen, Amy H.I. Lee, Wei-Jaw Deng & Kan-Yuang Liu (2007), The implementation of neural network for semiconductor PECVD process, Expert Systems with Applications, Volume 32, Issue 4, Pages 1148–1153. 7.Trevor S. Wiens, Brenda C. Dale, Mark S. Boyce, G. Peter Kershaw(2008), Three way k-fold cross-validation of resource selection functions, ScienceDirect, ecological modelling, Volume 212, Issue3-4, Pages 244–255. 8.Chao-Ton Su, Taho Yang, & Chir-Mour Ke(2002), A Neural- Network Approach for Semiconductor Wafer Post-Sawing Inspection, IEEE Trans. On Semiconductor Manufacturing, Volume 15, Issue 2, Pages 260-266. 9.Yang-Kun Oua, Yung-Ching Liu, Feng-Yuan Shih(2012), Risk prediction model for drivers’ in-vehicle activities – Application of task analysis and back-propagation neural network, Sciverse ScienceDirect, Transportation Research Part F, Volume 18, Pages 83–93. 10.Kweon, K. E., J. H. Lee, Y.-D. Ko, M.-C. Jeong, J.-M. Myoung & I. Yun(2007), Neural Network Based Modeling of HfO2 Thin Film Characteristics Using Latin Hypercube Sampling, Expert Systems with Applications, Volume 32, Issue 2, Pages 358–363. 11.Chang, M., J.-C. Chen, J.-W. Cheng & J.-S. Heh(2006), Advanced Process Control Expert System of CVD Membrane Thickness Based on Neural Network, Progress on Advanced Manufacture for Micro/Nano Technology 2005, Pt 1 and 2 Materials Science Forum, Volume 505-507, Pages 313-318. 12.Park, S.-J., M.-S. Lee, S.-Y. Shin, K.-H. Cho, J.-T. Lim, B.-S. Cho, Y.-H. Jei, M.-K. Kim & C.-H. Park(2005), Run-to-Run Overlay Control of Steppers in Semiconductor Manufacturing Systems Based on History Data Analysis and Neural Network Modeling, IEEE Transactions on Semiconductor Manufacturing, Volume 18, Issue 4, Pages 605-613. 13.Kim, J. Y., J. K. Sim, M. J. Song, C. H. Kim & L. K. Kwac (2004), The Performance Advancement of Test Algorithm Using Neural Network for Semiconductor Packages, Advances in Fracture and Failure Prevention, Pts 1 and 2 Key Engineering Materials, Volume 261-263, Pages 411-416. 14.王進德、蕭大全(1992),類神經網路與模糊控制理論入門,全華電腦圖書資 料股份有限公司,台北市。 15.蘇木春、張孝德(2010),機器學習:類神經網路、模糊系統以及基因演算法 則,全華電腦圖書資料股份有限公司,台北市。 16.張斐章、張麗秋、黃浩倫(2010),類神經網路:理論與實務,臺灣東華書 局,台北市。 17.賴建勳(2007),應用類神經網路於積體電路之化學氣相沉積機台故障診斷分 析碩士論文,國立成功大學工業與資訊管理學系碩士在職專班。 18.施柏屹(2000),倒傳遞類神經網路學習收斂之初步探討碩士論文,國立中央 大學機械工程研究所。 19.賴郁廷(2011),類神經網路應用於溼蝕刻機台流量分析,國立彰化師範大學 電機工程學系。 20.數位影像感知器(Digital Image Sensor)基礎原理介紹, http://www.starfpga.com/modules/tinyd2。 17.維基百科自由的百科全書之細胞式類神經網路介, http://zh.wikipedia.org/wiki/。 19.SAS RESOURCE CENTER,Dr.SAS專欄,活學活用類神經網路, http://www.sasresource.com/artical138.html。 20.逍遙工作室-交叉驗證理論, http://cg2010studio.wordpress.com。
|