帳號:guest(3.145.20.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):官振盟
作者(外文):Chen-Meng Kuan
論文名稱(中文):木質分析檢測裝置應用於生化檢測之開發
論文名稱(外文):Development of Lignocellulose-based Analytical Devices for Biochemical Detection
指導教授(中文):鄭兆珉
王玉麟
指導教授(外文):Chao-Min Cheng
Yu-Lin Wang
口試委員(中文):顏宗海
賴伯亮
曾繁根
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:102035805
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:71
中文關鍵詞:木質分析檢測裝置竹子木頭生化檢測
外文關鍵詞:Lignocellulose-based analytical devicesBambooWoodBiochemical detection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:156
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要論述木質分析檢測裝置應用於快速生化檢測之開發與醣基感測裝置應用於細菌檢測之開發。木質分析檢測裝置可利用一種或多種木質纖維材料做開發,此裝置之優點為:(1)製程簡單、(2)低成本、(3)操作容易、(4)快速檢測、(5)不需額外儀器補助。在本論文中我們示範木質分析檢測裝置應用於食物及水中的化學物質分析(水中與火鍋中亞硝酸鹽檢測、水中細菌的檢測、牛奶酸監測)與尿檢分析(尿液中亞硝酸鹽、尿膽素與酸鹼值檢測)。特別是在此論文中,我們開發了一套特殊水中細菌檢測的方法,他能達到與市售細菌免疫分析試片產品相同的檢測敏感度,且製作成本低、可當場操作、與快速檢測之優點;然而,無專一性之特性為此方法仍需日後改進之面向。另外,利用甘露糖所開發之醣基感測裝置應用於大腸桿菌之檢測亦是本論文中之研究重點。雖然目前只完成初步甘露糖修飾於紙上之條件與相關實驗設計,但相信此基礎將對未來的醣檢測裝置開發扮演重要的一部分。


This dissertation describes the development of lignocellulose-based analytical devices (LADs) for rapid bioanalysis in low-resource settings and glycan-based sensors for bacterial detection. LADs are constructed using either a single lignocellulose or a hybrid design consisting of multiple types of lignocellulose. LADs are simple, low-cost, easy to use, provide rapid response, and do not require external instrumentation during operation. Here, we demonstrate the implementation of LADs for food and water safety (i.e., nitrite assay in hot-pot soup, bacterial detection in water, and resazurin assay in milk) and urinalysis (i.e., nitrite, urobilinogen, and pH assays in human urine). Notably, we created a unique approach using simple chemicals to achieve sensitivity similar to that of commercially available immunochromatographic strips that is low-cost, and provides on-site, rapid detection, for instance, of Eschericia coli (E. coli) in water. This bacterial assay, however, cannot provide specific E. coli identification. Therefore, we proposed the development of glycan-based sensors to overcome such a challenge. We have successfully established Man9(GlcNAc)2-functinalized sensors and dendrimer-type glycan-based sensors. Although we did not yet present direct clues to the feasibility of our glycan-based sensors for bacterial detection in this dissertation, we have achieved the success of engineering original paper into glycan-based sensors and pointed out their potential applications in medical diagnosis.


Abstract iii
摘要 iv
Chapter 1 1
Introduction 1
1.1 Overview of the dissertation 1
1.2 Introduction to point-of-care testing and healthcare strategy 2
1.3 Paper-based analytical devices 7
1.4 PDMS-based microfluidic systems 11
Chapter 2 13
Development of Lignocellulose-based Analytical Devices 13
2.1 Introduction 13
2.2 Materials and Methods 15
2.2.1 Chemicals 16
2.2.3 Verifying wicking feasibility for internal channels of lignocelluloses 17
2.2.4 Measuring color intensity with ImageJ software 17
2.2.5 Analyzing the results of each assay 17
2.2.6 Nitrite assay 18
2.2.7 Resazurin assay 18
2.2.8 Urobilinogen assay 19
2.2.9 pH assay 19
2.2.10 Glucose assay 19
2.3 Results and Discussion 20
2.3.1 Lignocellulosic physical properties 20
2.3.2 Design of LADs 23
2.3.3 SMLADs 26
2.3.4 HLADs 32
2.4 Conclusions 33
Chapter 3 36
Lignocellulose-based Bacterial Detection Devices 36
3.1 Introduction 36
3.2 Materials and Methods 38
3.2.1 Chemicals 38
3.2.2 Measuring color intensity with ImageJ software 38
3.2.3 PMS-MTT assay 39
3.3 Results and Discussion 40
3.3.1 Lignocellulose-based bacterial detection devices for water safety 40
3.3.2 Lignocellulose-based bacterial detection devices for urinalysis 43
3.4 Conclusions 43
Chapter 4 45
Glycan-based sensors for bacterial analysis 45
4.1 Introduction to glycan-based analytical sensors 45
4.2 Materials and Methods 46
4.2.1 Chemicals 46
4.2.2 TEMPO‐mediated oxidation and of paper 47
4.2.3 Synthesis of alkyne bearing paper derivative 47
4.2.4 Synthesis of mannose click products 47
4.2.5 Evaluation of Man9(GlcNAc)2 modification on paper 48
4.3 Results and Discussion 49
4.4 Conclusions 53
Chapter 5 55
Future Perspectives 55
References 56
Publication Lists 69
Appendix A 71

1. Kuan, C. M., York, R. L. & Cheng, C. M. Lignocellulose-based analytical devices: bamboo as an analytical platform for chemical detection. Sci. Rep. 5, 18570 (2015).
2. Gubbins, P. O., Klepser, M. E., Dering-Anderson, A. M., Bauer, K. A., Darin, K. M., Klepser, S., Matthias, K. R. & Scarsi K. Point-of-care testing for infectious diseases: opportunities, barriers, and considerations in community pharmacy. J. Am. Pharm. Assoc. 54, 163-171 (2014).
3. US Food and Drug Administration, FDA approves first over-the-counter home-use rapid HIV test. FDA news release, 3 July 2012. Available: http://www.fda.gov/Ne wsEvents/Newsroom/PressAnnouncements/ ucm310542.htm. (Accessed: November 23rd, 2015).
4. Lee, E. J., Shin, S. D., Song, K. J., Kim, S. C., Cho, J. S., Lee, S. C., Park, J. O. & Cha W. C. A point-of-care chemistry test for reduction of turnaround and clinical decision time. Am. J. Emerg. Med. 29, 489-495 (2011).
5. Jani, I. V. & Peter, T. F. How point-of-care testing could drive innovation in global health. N. Engl. J. Med. 368, 2319-2324 (2013).
6. Pai, N. P., Vadnais, C., Denkinger, C., Engel, N. & Pai, M. Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low- and middle-income countries. PLoS Med. 9, e1001306 (2012).
7. Martinez, A. W., Phillips, S. T., Whitesides, G. M. & Carrilho, E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 82, 3-10 (2010).
8. Mao, X. & Huang, T. J. Microfluidic diagnostics for the developing world. Lab Chip 12, 1412-1416 (2012).
9. Fu, E., Liang, T., Houghtaling, J., Ramachandran, S., Ramsey, S.A., Lutz, B. & Yager, P. Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format. Anal. Chem. 83, 7941-7946 (2011).
10. Warrener, L., Slibinskas, R., Chua, K. B., Nigatu, W., Brown, K. E., Sasnauskas, K., Samuel, D. & Brown, D. A. point-of-care test for measles diagnosis: detection of measles-specific IgM antibodies and viral nucleic acid. Bull World Health Organ. 89, 675-82 (2011).
11. Pesce, M. A., Chow, K. F., Hod, E. & Spitalnik S. L. Rapid HIV antibody testing methods and clinical utilization. Am. J. Clin. Pathol. 126 (Suppl 1), S61-S70 (2006).
12. Xu, J., Feng, T., Lin, D. D., Wang, Q. Z., Tang, L., Wu, X. H., Guo, J. G., Peeling, R. W. & Zhou, X. N. Performance of a dipstick dye immunoassay for rapid screening of Schistosoma japonicum infection in areas of low endemicity. Parasit. Vectors 4, 87 (2011).
13. Urdea, M., Penny, L. A., Olmsted, S. S., Giovanni, M. Y., Kaspar, P., Shepherd, A., Wilson, P., Dahl, C. A., Buchsbaum, S., Moeller, G. & Hay Burgess, D. C. Requirements for high impact diagnostics in the developing world. Nature 444 (Suppl 1), 73-79 (2006).
14. MACHEREY-NAGEL GmbH & Co. KG, Medi-Test URYXXON® Stick 10. Available at: http://www.mn- et.com/StartpageMedicalDiagnostic/Urinetests/Med ediTestURYXXONStick10/tabid/10387/language/en-US/Default.aspx. (Accessed: November 24, 2015)
15. SPD Development Company Ltd, Clearblue Pregnancy Tests. Available at: http:// uk.clearblue.com/ healthcare-professionals/pregnancy-tests. (Accessed: November 24, 2015)
16. Yager, P., Domingo, G. J. & Gerdes, J. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 10, 107-44 (2008).
17. Chin, C. D., Linder, V. B. & Sia, S. K. Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7, 41-57 (2007).
18. Bandodkar, A. J. & Wang, J. Non-invasive wearable electrochemical sensors: a review Trends Biotechnol. 32, 363-371 (2014).
19. Vashist, S. K., Mudanyali, O., Schneider, E. M., Zengerle, R. & Ozcan, A. Cellphone-based devices for bioanalytical sciences. Anal. Bioanal. Chem. 406, 3263-3277 (2014).
20. Abul-Husn, N. S., Owusu Obeng, A., Sanderson, S. C., Gottesman, O. Scott, S. A. Implementation and utilization of genetic testing in personalized medicine. Pharmgenomics. Pers. Med. 7, 227-240 (2014).
21. Qin, J., Li, M. J., Wang P, Zhang, M. Q. & Wang, J. ChIP-Array: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor. Nucleic Acids Res. 39, W430-436 (2011).
22. Pai, N. P. & Klein, M. B. (2008) Are we ready for homebased, self-testing for HIV? Future HIV Therapy 2, 515-520 (2008).
23. van El, C. G., Cornel, M. C., Borry, P., Hastings, R. J., Fellmann, F., Hodgson, S. V., Howard, H. C., Cambon-Thomsen, A., Knoppers, B. M., Meijers-Heijboer, H., Scheffer, H., Tranebjaerg, L., Dondorp, W. & de Wert, G. M. Whole-genome sequencing in health care: recommendations of the European Society of Human Genetics. Eur. J. Hum. Genet. 21, 580-584 (2013).
24. World Health Organization, The top 10 causes of death 2012, www.who.int/ mediacentre/factsheets/fs310/en/index1.html. (Accessed: November 25, 2015)
25. LeDuc, P., Agaba, M., Cheng, C. M., Gracio, J., Guzman, A. & Middelberg, A. Beyond disease, how biomedical engineering can improve global health. Sci. Transl. Med. 6, 266fs48 (2014).
26. Käferstein, F. & Abdussalam, M. Food safety in the 21st century. Bull World Health Organ. 77, 347-351 (1999).
27. Point of Care Diagnostics. BCC Healthcare Research Report (2015).
28. Espicom Business Intelligence, Hospital-Based Point-of-Care Diagnostics: Products, Players, and Outlook to 2017 (2012).
29. Whitesides, G. M. Cool, or simple and cheap? Why not both? Lab Chip 13, 11-13 (2013).
30. Dheda, K., Ruhwald, M., Theron, G., Peter, J. & Yam, W. C. Point-of-care diagnosis of tuberculosis: past, present and future. Respirology 18, 217-232 (2013)
31. Mace, C. R. & Ryan, U. S. A unique approach to business strategy as a means to enable change in global healthcare: a case study. Clin. Chem. 58, 1302-1305 (2012).
32. Sharma, H., Nguyen, D., Chen, A., Lew, V. & Khine, M. Unconventional low-cost fabrication and patterning techniques for point of care diagnostics. Ann. Biomed. Eng. 39, 1313-1327 (2011).
33. Tsao, C. W. & DeVoe D. L. Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluid. 6, 1-16 (2009).
34. Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113-116 (2000).
35. Yetisen, A. K., Akram, M. S. & Lowe, C. R. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13, 2210-2251 (2013).
36. Carrilho, E., Martinez, A. W. & Whitesides, G.M. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal. Chem. 81, 7091-7095 (2009).
37. Martinez, A. W., Phillips, S. T., Carrilho, E., Thomas, S. W. 3rd, Sindi, H. & Whitesides G. M. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 80, 3699-3707 (2008).
38. Li, X., Tian, J. & Shen, W. Thread as a versatile material for low-cost microfluidic diagnostics. ACS Appl. Mater. Interfaces 2, 1-6 (2010).
39. Reches, M., Mirica, K. A., Dasgupta, R., Dickey, M. D., Butte, M. J. & Whitesides, G. M. Thread as a matrix for biomedical assays. ACS Appl. Mater. Interfaces 2, 1722-1728 (2010).
40. Nilghaz, A.,Wicaksono, D. H., Gustiono, D., Abdul Majid, F. A., Supriyanto, E. & Abdul Kadir, M. R. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip 12, 209-218 (2012).
41. Lin, S. C., Hsu, M. Y., Kuan, C. M., Wang, H. K., Chang, C. L., Tseng, F. G. & Cheng, C. M. Cotton-based diagnostic devices. Sci. Rep. 4, 6976 (2014).
42. Sechi, D., Greer, B., Johnson, J. & Hashemi, N. Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine. Anal. Chem. 85, 10733-10737 (2013).
43. Li, X., Tian, J. & Shen, W. Quantitative biomarker assay with microfluidic paper-based analytical devices. Anal. Bioanal. Chem. 396, 495-501 (2010).
44. Martinez, A. W., Phillips, S. T. & Whitesides, G. M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl Acad. Sci. USA 105, 19606-19611(2008).
45. Pollock, N. R., Rolland, J. P., Kumar, S., Beattie, P. D., Jain, S., Noubary, F., Wong, V. L., Pohlmann, R. A., Ryan, U. S. & Whitesides, G. M. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci. Transl. Med. 4, 152ra129 (2012).
46. Cheng, C. M., Martinez, A. W., Gong, J., Mace, C. R., Phillips, S. T., Carrilho, E., Mirica, K. A. & Whitesides, G. M. Paper-based ELISA. Angew. Chem. Int. Ed. Engl. 49, 4771-4774 (2010).
47. Lo, S. J., Yang, S. C., Yao, D. J., Chen, J. H., Tu, W. C. & Cheng, C. M. Molecular-level dengue fever diagnostic devices made out of paper. Lab Chip 13, 2686-2692 (2013).
48. Hsu, M. Y., Yang, C. Y., Hsu, W. H., Lin, K. H., Wang, C. Y., Shen, Y. C., Chen, Y. C., Chau, S. F., Tsai, H. Y. & Cheng, C. M. Monitoring the VEGF level in aqueous humor of patients with ophthalmologically relevant diseases via ultrahigh sensitive paper-based ELISA. Biomaterials 35, 3729-3735 (2014).
49. Hsu, C. K., Huang, H. Y., Chen, W. R., Nishie, W., Ujiie, H., Natsuga, K., Fan, S. T., Wang, H. K., Lee, J. Y., Tsai, W. L., Shimizu, H. & Cheng, C. M. Paper-based ELISA for the detection of autoimmune antibodies in body fluid–the case of bullous pemphigoid. Anal. Chem. 86, 4605-4610 (2014).
50. Murdock, R. C., Shen, L., Griffin, D. K., Kelley-Loughnane, N., Papautsky, I. & Hagen, J. A. Optimization of a paper-based ELISA for a human performance biomarker. Anal. Chem. 85, 11634-11642 (2013).
51. Free, A. H., Adams, E. C., Kercher, M. L., Free, H. M. & Cook, M. H. Simple specific test for urine glucose. Clin. Chem. 3, 163-168 (1957).
52. A Timeline of Pregnancy Testing. Available at: http://history.nih.gov/exhibits/thin blueline/timeline.html. (Accessed: November 24, 2015)
53. Gubala, V., Harris, L. F., Ricco, A. J., Tan, M. X. & Williams, D. E. Point of care diagnostics: status and future. Anal. Chem. 84, 487-515 (2012).
54. Cheng, C. M., Kuan, C. M. & Chen, C. Fu. In-vitro diagnostic devices – introduction to current point-of-care diagnostic devices. 1st ed., 1-13. Springer International Publishing AG (2015).
55. Hu, J., Wang, S. Q., Wang, L., Li, F., Pingguan-Murphy, B., Lu, T. J. & Xu, F. Advances in paper-based point-of-care diagnostics. Biosens. Bioelectron. 54, 585-597 (2014).
56. Carrilho, E., Phillips, S. T., Vella, S. J. & Martinez, A. W., Whitesides, G. M. Paper microzone plates. Anal. Chem. 81, 5990-5998 (2009).
57. Abe, K., Suzuki, K. & Citterio, D. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal. Chem. 80, 6928-6934 (2008).
58. Yagoda, H. Applications of confined spot tests in analytical chemistry: preliminary paper. Ind. Eng. Chem., Anal. Ed. 9, 79-82 (1937).
59. Martinez, A. W., Phillips, S. T., Butte, M. J. & Whitesides G. M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. Engl. 46, 1318-1320 (2007).
60. Fu, E., Kauffman, P., Lutz, B. & Yager, P. Chemical signal amplification in two-dimensional paper networks. Sens. Actuators B Chem. 149, 325-328 (2010)
61. Bruzewicz, D. A., Reches, M. & Whitesides, G. M. Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal. Chem. 80, 3387-3392 (2008).
62. Songjaroen, T., Dungchai, W., Chailapakul, O. & Laiwattanapaisal, W. Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta 85, 2587-2593 (2011).
63. Kao, P. K. & Hsu, C. C. Battery-operated, portable, and flexible air microplasma generation device for fabrication of microfluidic paper-based analytical devices on demand. Anal Chem. 86, 8757-8762 (2014).
64. Oyola-Reynoso, S., Heim, A. P., Halbertsma-Black, J., Zhao, C., Tevis, I. D., Çınar, S., Cademartiri, R., Liu, X., Bloch, J. F. & Thuo, M. Draw your assay: fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper. Talanta 144, 289-293 (2015).
65. Mitchell, H. T., Noxon, I. C., Chaplan, C. A., Carlton, S. J., Liu, C. H., Ganaja, K. A., Martinez, N. W., Immoos, C. E., Costanzo, P. J. & Martinez, A. W. Reagent pencils: a new technique for solvent-free deposition of reagents onto paper-based microfluidic devices. Lab Chip 15, 2213-2220 (2015).
66. Li, Z., Tevis, I. D., Oyola-Reynoso, S., Newcomb, L. B., Halbertsma-Black, J., Bloch, J. F. & Thuo, M. Melt-and-mold fabrication (MnM-Fab) of reconfigurable low-cost devices for use in resource-limited settings. Talanta 145, 20-28 (2015).
67. Kwong, P. & Gupta, M. Vapor phase deposition of functional polymers onto paper-based microfluidic devices for advanced unit operations. Anal. Chem. 84, 10129-10135 (2012).
68. Lee, J. N., Park, C. & Whitesides, G. M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544-6554 (2003).
69. Ornatska, M., Sharpe, E., Andreescu, D. & Andreescu, S. Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal. Chem. 83, 4273-4280 (2011).
70. Yuan, J. P., Gaponik, N. & Eychmuller, A. Application of polymer quantum dot-enzyme hybrids in the biosensor development and test paper fabrication. Anal. Chem. 84, 5047-5052 (2012).
71. Yu, J. H., Ge, L., Huang, J. D., Wang, S. M. & Ge, S. G. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid Lab Chip 11, 1286-1291 (2011).
72. Forster, R. J., Bertoncello, P. & Keyes, T. E. Electrogenerated chemiluminescence. Annu. Rev. Anal. Chem. 2, 359-385 (2009).
73. Godino, N., Gorkin, R., Bourke, K. & Ducree, J., Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices. Lab Chip 12, 3281-3284 (2012).
74. Yu, W. W., White, I. M., Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection Analyst 2013, 138, 1020-1025
75. Mu, X., Zhang, L., Chang, S., Cui, W. & Zheng, Z. Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection. Anal. Chem. 86, 5338-5344 (2014).
76. Chen, Y. H., Kuo, Z. K. & Cheng, C. M. Paper - a potential platform in pharmaceutical development. Trends Biotechnol. 33, 4-9 (2015).
77. Xue, P. & Kang, Y. Paper-based asensors and microfludic chips. Encyclopedia of microfluidics and nanofluidics. Springer Science+Business Media New York (2013).
78. Hossain, S. M. & Brennan, J. D. β-Galactosidase-based colorimetric paper sensor for determination of heavy metals. Anal. Chem. 83, 8772-8778 (2011).
79. Mentele, M. M., Cunningham, J., Koehler, K., Volckens, J. & Henry, C. S. Microfluidic paper-based analytical device for particulate metals. Anal. Chem. 84, 4474-4480 (2012).
80. Tan, S. N., Ge, L. & Wang, W. Paper disk on screen printed electrode for one-step sensing with an internal standard. Anal. Chem. 82, 8844-8847 (2010).
81. Bisha, B., Adkins, J. A., Jokerst, J. C., Chandler, J. C., Pérez-Méndez, A., Coleman, S. M., Sbodio, A. O., Suslow, T. V., Danyluk, M. D., Henry, C. S. & Goodridge, L. D. Colorimetric paper-based detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from large volumes of agricultural water. J. Vis. Exp. (2014).
82. United States Environmental Protection Agency, Food and Pesticides. Available at: http://www2.epa.gov/safepestcontrol/food-and-pesticides. (Accessed: November 27, 2015)
83. Gram, L., Ravn, L., Rasch, M., Bruhn, J. B., Christensen, A. B. & Givskov, M. Food spoilage—interactions between food spoilage bacteria. Int. J. Food Microbiol. 78, 79-97 (2002).
84. Badawy, M. E. & El-Aswad, A. F. Bioactive paper sensor based on the acetylcholinesterase for the rapid detection of organophosphate and carbamate pesticides. Int. J. Anal. Chem. 2014, 536823 (2014).
85. Jokerst, J. C., Adkins, J. A., Bisha, B., Mentele, M. M., Goodridge, L. D. & Henry, C. S. Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal. Chem. 84, 2900-2907 (2012).
86. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368-373 (2006).
87. Ouellette, J. A new wave of microfluidic devices. Ind. Phys. 9, 14-17 (2003).
88. Mehling, M. & Tay, S. Microfluidic cell culture. Curr. Op. Biotechnol. 25, 92-102 (2014).
89. Sims, P. A., Greenleaf, W. J., Duan, H. & Xie, X. S. Fluorogenic DNA sequencing in PDMS microreactors. Nat. Methods. 8, 575-580 (2011).
90. Chao, T. C. & Ros, A. Microfluidic single-cell analysis of intracellular compounds. J. R. Soc. Interface. J. R. Soc. Interface. 5, S139-S150 (2008).
91. Hashimoto, M., Tong, R. & Kohane D. S. Microdevices for nanomedicine. Mol. Pharm. 10, 2127-2144 (2013).
92. Shim, J. U., Cristobal, G., Link, D. R., Thorsen, T. & Fraden, S. Using microfluidics to decouple nucleation and growth of protein crystals. Cryst. Growth Des. 7, 2192-2194 (2007).
93. Friend, J. & Yeo, L. Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4, 026502 (2010).
94. Lee, C.-Y., Chang, C.-L., Wang, Y.-N. & Fu L-M Microfluidic mixing: a review. Int. J. Mol. Sci. 12, 3263-3287 (2011).
95. Gu, W., Zhu, X., Futai, N., Cho, B. S. & Takayama, S. (2004) Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc. Natl. Acad. Sci. U S A. 101, 15861-15866 (2004).
96. Fang, Z. et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 14, 765-773 (2014).
97. Kuan, C. M., Lange, R. S., Cheng, C. M.; inventors; National Tsing Hua University. Three dimensional lignocellulosic detection device. United States patent US 20140377787 A1. 2014 December 25th.
98. Kuan, C. M., Lange, R. S., Cheng, C. M.; inventors; National Tsing Hua University. Three dimensional lignocellulosic detection device. Taiwan patent TWI 490475. 2015 July 1st.
99. Rubin, E. M. Genomics of cellulosic biofuels. Nature 454, 841-845 (2008).
100. McElrone, A. J., Choat, B., Gambetta, G. A. & Brodersen, C. R. (2013) Water uptake and transport in vascular Plants. Nature Education Knowledge 4, 6 (2013).
101. McElrone, A. J., Choat, B., Gambetta, G. A. & Brodersen, C. R. (2013) Water uptake and transport in vascular Plants. Nature Education Knowledge 4, 6 (2013).
102. Sarkar, P., Bosneaga, E. & Auer M. Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J. Exp. Bot. 60, 3615-3635 (2009).
103. Lobovikov, M., Paudel, S., Piazza, M., Ren H. & Wu, Junqi., Non-wood forest products 18 - world bamboo resources. Thematic study. (2007) Available at: http://www.fag.org/docrep/010/a1243e/a1243e00.htm. (Accessed: 2015 2015 7th)
104. Li, C. Z., Vandenberg, K., Prabhulkar, S., Zhu, X., Schneper, L., Methee, K., Rosser, C. J. & Almeide. E. Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosens. Bioelectron. 26, 4342-4348 (2011).
105. Sigma-Aldrich Co. LLC., Whatman® cellulose chromatography papers. Available at: http://www.sigmaaldrich.com/catalog/product/aldrich/z691003?lang =en®ion=TW. (Accessed: 2015 September 14th)
106. Santamaria, P. Nitrate in vegetables: toxicity, content, intake and EC regulation. J. Sci. Food Agric. 86, 10-17 (2006).
107. European Food Safety Authority. Statement on nitrites in meat products. EFSA J. 8, 1538 (2010).
108. Food and Drug Administration. 510 k substantial equivalence determination decision summary assay only template, Available at: http://www.accessdata.fda gov/cdrh_docs/reviews/K042259.pdf. (Accessed: 2015 September 7th)
109. Simerville, J. A., Maxted, W. C. & Pahira, J. J. Urinalysis: a comprehensive review. Am. Fam. Physician. 71, 1153-1162 (2005).
110. Ahmed, A., Rushworth, J. V., Hirst, N. A. & Millner, P. A. Biosensors for whole-cell bacterial detection. Clin. Microbiol. Rev. 27, 631-646.
111. Lutter, S. A., Currie, M. L., Mierns in children hospitalized for urinary tract infections. Arch. Pediatr. Adolesc. Med. 159, 924-928 (2005).
112. Edberg, S. C., Rice, E. W., Karlin, R. J. & Allen, M. J. Escherichia coli: the best biological drinking water indicator for public health protection. Symp. Ser. Soc. Appl. Microbiol. 88, 106S-116S (2000).
113. Gram, L., Ravn, L., Rasch, M., Bruhn, J. B., Christensen, A. B. & Givskov, M. Food spoilage—interactions between food spoilage bacteria. Int. J. Food Microbiol. 78, 79-97 (2002).
114. Roper, M. C. Pantoea stewartii subsp. stewartii: lessons learned from a xylem-dwelling pathogen of sweet corn. Mol. Plant Pathol. 12, 628-637 (2011).
115. Yamamoto, Y. PCR in diagnosis of infection: detection of bacteria in cerebrospinal fluids. Clin. Diagn. Lab. Immunol. 9, 508-514 (2002).
116. Yoo, S. M. & Lee, S. Y. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. (2015). Doi:10.1016/j.tibtech.2015.09.012
117. Sajid, M., Kawde, A.-N. & Muhammad, D. Designs, formats and applications of lateral flow assay: a literature review. J. Saudi Chem. Soc. 19, 689-705 (2014).
118. Tram, K., Kanda, P., Salena, B. J., Huan, S. & Li, Y. Translating bacterial detection by DNAzymes into a litmus test. Angew. Chem. Int. Ed. Engl. 53, 12799-12802 (2014).
119. Qu, L., Ali, M. M., Aguirre, S. D., Liu, H., Jiang, Y. & Li, Y. Examination of bacterial inhibition using a catalytic DNA. PLoS One. 9, e115640 (2014).
120. Yoo, S. M., Kim, D. K. & Lee, S. Y. Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species. Talanta. 132, 112-117 (2015).
121. Park, J. H., Byun, J. Y., Shim, W. B., Kim, S. U. & Kim, M. G. High-sensitivity detection of ATP using a localized surface plasmon resonance (LSPR) sensor and split aptamers. Biosens. Bioelectron. 73, 26-31 (2015).
122. Kang, T., Yoo, S. M., Yoon, I., Lee, S. Y. & Kim, B. Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett. 10, 1189-1193 (2010).
123. Hennigan, S. L., Driskell, J. D., Ferguson-Noel, N., Dluhy, R. A., Zhao, Y., Tripp, R. A. & Krause, D. C. Detection and differentiation of avian mycoplasmas by surface-enhanced Raman spectroscopy based on a silver nanorod array. Appl. Environ. Microbiol. 78, 1930-1935 (2012).
124. Deiss, F., Funes-Huacca, M. E., Bal, J., Tjhung, K. F. & Derda, R. Antimicrobial susceptibility assays in paper-based portable culture devices. Lab Chip 14, 167-171 (2014).
125. Yoo, S. M., Choi, J. Y., Yun, J. K., Choi, J. K., Shin, S. Y., Lee, K., Kim, J. M. & Lee, S. Y. DNA microarray-based identification of bacterial and fungal pathogens in bloodstream infections. Mol. Cell. Probes 24, 44-52 (2010).
126. Carey, J. R., Suslick, K. S., Hulkower, K. I., Imlay, J. A., Imlay, K. R., Ingison, C. K., Ponder, J. B., Sen, A. & Wittrig, A. E. Rapid identification of bacteria with a disposable colorimetric sensing array. J. Am. Chem. Soc. 133, 7571-7516 (2011).
127. Bartlett, R. C., Mazens, M. & Greenfield, B. Acceleration of tetrazolium reduction by bacteria. J. Clin. Microbiol. 3, 327-329 (1976).
128. World Health Organization, The world health report 2002 - reducing risks, promoting healthy life. World health report. (2002) Available at: http://www.who. int/whr/2002/chapter4/en/index7.html. (Accessed: 2015 September 7th)
129. Burnham, S., Hu, J., Anany, H., Brovko, L., Deiss, F., Derda, R. & Griffiths, M. W. Towards rapid on-site phage-mediated detection of generic Escherichia coli in water using luminescent and visual readout. Anal. Bioanal. Chem. 406, 5685-5693 (2014)
130. Funk, D., Schrenk, H. H. & Frei, E. Serum albumin leads to false-positive results in the XTT and the MTT assay. Biotechniques. 43, 178, 180, 182 (2007).
131. Wang, S. K. & Cheng, C. M. Glycan-based diagnostic devices: current progress, challenges and perspectives. Chem. Commun. 51, 16750-16762 (2015).
132. Sears, P. & Wong, C.-H. Carbohydrate mimetics: a new strategy for tackling the problem of carbohydrate-mediated biological recognition. Angew. Chem. Int. Ed. Engl. 38, 2300-2324 (1999).
133. Koeller, K. M. & Wong, C. H. Emerging themes in medicinal glycoscience. Nat. Biotechnol. 18, 835-841 (2000).
134. Nicolaou, K.C., Boddy, C.N.C., Brase, S. & Winssinger, N. Chemistry, biology, and medicine of the glycopeptide antibiotics. Angew. Chem. Int. Ed. Engl. 38, 2096-2152 (1999).
135. Wessel, H. P. Heparinoid mimetics. In Topics in current chemistry. Glycoscience: synthesis of substrate analogs and mimetics (eds Driguez, H. & Thiem, J.) 215-239 (Springer-Verlag, Berlin; 1997).
136. Englund, P. T. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu. Rev. Biochem. 62, 121-138 (1993)
137. Wang, S. K., Liang, P. H., Astronomo, R. D., Hsu, T. L., Hsieh, S. L., Burton, D. R. & Wong C. H. Targeting the carbohydrates on HIV-1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc. Natl. Acad. Sci. U S A 105, 3690-3695.
138. Krumm, S. A., Mohammed, H., Le, K. M., Crispin, M., Wrin, T., Poignard, P., Burton, D. R. & Doores, K. J. Mechanisms of escape from the PGT128 family of anti-HIV broadly neutralizing antibodies. Retrovirology 13, 8 (2016).
139. Campuzano, S., Orozco, J., Kagan, D., Guix, M., Gao, W., Sattayasamitsathit, S., Claussen, J. C., Merkoçi, A. & Wang J. Bacterial isolation by lectin-modified microengines. Nano Lett. 12, 396-401 (2012).
140. Mader, A., Gruber, K., Castelli, R., Hermann, B. A., Seeberger, P. H., Rädler, J. O. & Leisner, M. Discrimination of Escherichia coli strains using glycan cantilever array sensors. Nano Lett. 12, 420-423 (2012).
141. Wellens, A., Garofalo, C., Nguyen, H., Van Gerven, N., Slattegard, R., Hernalsteens, J. P., Wyns, L., Oscarson, S., De Greve, H., Hultgren, S. & Bouckaert, J. Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS ONE 3, e2040 (2008).
142. Mukhopadhyay, B., Martins, M. B., Karamanska, R., Russel, D. A. & Field, R. A. Tetrahedron Lett. 50, 886-889 (2009).
143. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822 (1990).
144. Lee, Y. J., Han, S. R., Maeng, J. S., Cho, Y. J., Lee, S. W. In vitro selection of Escherichia coli O157:H7-specific RNA aptamer. Biochem. Biophys. Res. Commun. 417, 414-420 (2012).
145. Liang, P. H., Wang, S. K. & Wong, C. H. Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: determination of surface and solution dissociation constants. J. Am. Chem. Soc. 129, 11177-11184 (2007).
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *