帳號:guest(18.119.135.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邵裕威
作者(外文):Shao, Yu Wei
論文名稱(中文):奈米氧氣感測器用於細胞生理環境感測
論文名稱(外文):Nano Oxygen Particles (NOPs) for Cell Physiological Condition Monitoring
指導教授(中文):曾繁根
指導教授(外文):Tseng, Fan Gang
口試委員(中文):董瑞安
黃智永
口試委員(外文):Doong, Ruey an
Huang, Chih Yung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:102035702
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:81
中文關鍵詞:聚苯乙烯Ru(dpp)3Cl2Pluronic F-127溶氧量海藻膠
外文關鍵詞:PolystyreneRu(dpp)3Cl2Pluronic F-127Dissolved OxygenAlginate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:59
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來為了治療糖尿病,發展出最新技術為利用組織工程技術來重建人工胰臟組織。植入人體中的人工胰臟組織不但可以釋放足夠的胰島素,還能針對身體的需求適時反應並調控胰島素置放劑量,其工作效能可以達到接近原本胰臟的工作能力,本研究是將細胞被包圍在一個直徑約750μm的水膠球中,因為缺乏血管運輸養分與氧氣,細胞的代謝必須完全靠擴散作用完成,因此如何調控水膠球的大小,並且了解氧氣與代謝物質在膠球內之分佈狀況,對於是否能長期維持健康的細胞生長成為點當中要的關鍵因素。
將市面上普遍可購得到表面修飾羧基的聚苯乙烯奈米微球(Polystyrene Nanobeads)經過一系列的製程處理後將可得到奈米氧氣感測器(Nano Oxygen Particles, NOPs),而本研究所採用氧氣感測螢光化學式為C72H48Cl2N6Ru,又稱做Ru(dpp)3Cl2,讓高度生物相容性的Pluronic F-127當作支架,將對氧氣有感測效果的Ru(dpp)3Cl2包附F-127的疏水中心,讓親水端和膠球上羧基酯化反應後鍵結,再將NOPs和細胞放在水膠的球狀結構內並使其正常工作,藉由觀察NOPs的螢光亮度可以偵測環境上的溶氧量,而氧氣環境對動物細胞的生理機制尤其重要,若能得知環境氧氣訊息將可以做進一步的應用,例如:將水膠球狀結構植入人體的皮下,胰島細胞將釋放出胰島素並滲出水膠球外,讓糖尿病患血液中血糖含量恢復正常,且NOPs為點狀奈米感測器,有著訊噪比高的優點,是一個具有潛力的研究。
In order to treat diabetes, the development of the latest technology is that scientists use tissue engineering techniques to rebuild artificial pancreas tissue in recent years. The implanted artificial pancreas tissue not only release enough insulin, but also timely response to the needs of the body and regulate the insulin dose. The efficiency can reach close to the original working capacity of the pancreas. We culture the cells inside a hydrogel sphere which the diameter is about 750μm. Metabolism of cells must be fully completed by diffusion because of lack of blood vessels which transport nutrients and oxygen. Therefore, controlling hydrogel spheres size and understanding the oxygen distribution within hydrogel spheres is an important key point for cell healthy growth.
In this research, we use nanopolystyrene beads to obtain nanoxygen particles (NOPs) after a series of processes. And then, we let NOPs and normal islet cells work together within a spherical hydrogel structure. We can detect dissolved oxygen of environments by observing fluorescence intensity of NOPs. Oxygen of environments is particularly important for the physiological mechanism of animal cells. If we get the information, it will be able to make further applications. For example : We could let hydrogel spheres implant subcutaneously. Islet cells release insulin which diffuses to out of spheres, so diabetics blood sugar levels back to normal. NOPs are a point-like nanosensors and have high signal to noise ratio. It’s a promising research.
總目錄
摘要 I
總目錄 III
圖目錄 V
表目錄 VIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 4
第二章 文獻回顧 6
2.1 偵測多重性質之奈米感測器 6
2.2 氧氣螢光分子的應用 8
2.2.1 球形結構 8
2.2.2 細胞生理環境 13
2.3 水膠的應用 16
2.3.1 管狀水膠 16
2.3.2 球狀水膠 20
第三章 實驗設計、原理與步驟 27
3.1 實驗設計 27
3.2 實驗原理 28
3.3 實驗步驟 29
3.3.1 NOPs製作 29
3.3.2 無菌式電噴灑水膠球 31
3.4 實驗材料 32
3.4.1 聚苯乙烯(Polystyrene)[63] 32
3.4.2 螢光分子 33
3.4.3 水膠 36
3.5 實驗儀器 40
第四章 實驗結果與討論 44
4.1 利用FTIR判定酯基存在 44
4.1.1 控制變因:溫度 44
4.1.2 控制變因:加熱攪拌時間 46
4.2 NOPs在空氣中螢光校正 48
4.3 NOPs在不同氣體中之螢光回復性 50
4.4 NOPs在去離子水中螢光校正 52
4.4.1 imageJ螢光亮度分析 52
4.5 NOPs在水膠球中螢光校正 55
4.6 NOPs和Hela在水膠球中培養 58
4.7 NOPs在A549細胞內培養 66
第五章 結論 68
5.1 實驗設計 68
5.2 FTIR判定酯基是否存在 68
5.3 NOPs在空氣中螢光校正 68
5.4 NOPs在不同氣體中之螢光回復性 68
5.5 NOPs在去離子水中螢光校正 69
5.6 NOPs在水膠球中螢光校正 69
5.7 NOPs和Hela在水膠球中培養 69
5.8 NOPs在A549細胞內培養 70
第六章 未來工作 71
參考文獻 72






[1] 宋信文,梁晃千, “建立人類的身體工房 組織工程”, 科學發展, 362, 6-11, 2003.
[2] 劉華昌等人, “再生醫學”, 教育部顧問室「生物及醫學科技人才培育先導型計畫」幹細胞與組織工程教學資源中, 2008.
[3] World Health Organization. Global Health Estimates: Deaths by Cause, Age, Sex and Country, 2000-2012. Geneva, WHO, 2014.
[4] International Diabetes Federation: Diabetes Atlas, Available at: http://www.diabetesatlas.org/, Accessed 4 April 2014.
[5] 張淳堆, “如何使用胰島素”, 財團法人糖尿病關懷基金會, 2011.
[6] Hsing-Wen Sung et al, “Preparation and Characterization of Nanoparticles Shelled with Chitosan for Oral Insulin Delivery”, Biomacromolecules, 8, 146-152, 2007.
[7] You-Qing Wang, “Artificial Pancreas: State-of-the-Art, Challenges and Outlook”, Chinese Journal of Biomedical Engineering, 32, No.3, 2013.
[8] Zhen Gu, Daniel G. Anderson et al, “Glucose-Responsive Microgels Integrated with Enzyme Nanocapsules for Closed-Loop Insulin Delivery”, ACS Nano, 7, 6758–6766, 2013.
[9] Tram T. Dang, Robert Langer, Daniel G. Anderson et al, “Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug”, Biomaterials, 34, 5792-5801, 2013.
[10] Zhen Gu, Robert Langer, Daniel G. Anderson et al, “Injectable Nano-Network for Glucose-Mediated Insulin Delivery”, ACS Nano, 7, 4194-4201, 2013.
[11] Sarina Arain, Gernot T. John, Christian Krause et al., “Characterization of microtiterplates with integrated optical sensors for oxygen and pH, and their applications to enzyme activity screening, respirometry, and toxicological assays”, Sensors and Actuators B: Chemical, 113, 639, 2006.
[12] Nicolas B. Borchert, Gelii V. Ponomarev, Joe P. Kerry, and Dmitri B. Papkovsky, “O2/pH Multisensor Based on One Phosphorescent Dye”, Analytical Chemistry, 83, 18, 2011.
[13] Anna S. Kocincová, Stefan Nagl, Sarina Arain et al., “Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH”, Biotechnology and Bioengineering, 100, 430, 2008.
[14] Lisa M. Onishi, John M. Prausnitz, and John Newman, “Water-Nafion Equilibria. Absence of Schroeder's Paradox”, Analytical Chemistry, 79, 60, 2007
[15] Ganna S. Vasylevska, Sergey M. Borisov, Christian Krause, “Indicator-Loaded Permeation-Selective Microbeads for Use in Fiber Optic Simultaneous Sensing of pH and Dissolved Oxygen”, Chemistry of Materials, 18, 4609,2006.
[16] Muhammet Erkan Köse, Bruce F. Carroll, and Kirk S. Schanze, “Preparation and Spectroscopic Properties of Multiluminophore Luminescent Oxygen and Temperature Sensor Films”, Langmuir, 21, 9121, 2005.
[17] Sergey M. Borisov, Anna S. Vasylevska, Christian Krause and Otto S. Wolfbeis, “Composite Luminescent Material for Dual Sensing of Oxygen and Temperature”, Advanced Functional Materials, 16, 1536, 2006.
[18] Lorenz H. Fischer, Matthias I. J. Stich, Otto S. Wolfbeis et al., “Red- and Green-Emitting Iridium(III) Complexes for a Dual Barometric and Temperature-Sensitive Paint”, Chemistry - A European Journal, 15, 10857, 2009.
[19] Matthias I. J. Stich, Stefan Nagl, Otto S. Wolfbeis et al., “A Dual Luminescent Sensor Material for Simultaneous Imaging of Pressure and Temperature on Surfaces”, Advanced Functional Materials, 18, 1399, 2008.
[20] Sergey M. Borisov, Christian Krause, Sarina Arain, Otto S. Wolfbeis, “Composite Material for Simultaneous and Contactless Luminescent Sensing and Imaging of Oxygen and Carbon Dioxide”, Advanced Materials, 18, 1511, 2008.
[21] Claudia R. Schroeder, Gerhard Neurauter, Ingo Klimant, “Luminescent dual sensor for time-resolved imaging of pCO2 and pO2 in aquatic systems”, Microchimica Acta, 158, 205, 2007.
[22] Susumu Uchiyama , Atsushi Ohshima , Shota Nakamura et al., “Complete Thermal-Unfolding Profiles of Oxidized and Reduced Cytochromes c”, Journal of the American Chemical Society, 126, 3032, 2004.
[23] Xu-dong Wang, Robert J. Meier and Otto S. Wolfbeis, “A Fluorophore-Doped Polymer Nanomaterial for Referenced Imaging of pH and Temperature with Sub-Micrometer Resolution”, Advanced Functional Materials, 22, 4202, 2012.
[24] Di Wang, Tao Liu, Jun Yin, and Shiyong Liu, “Stimuli-Responsive Fluorescent Poly(N-isopropylacrylamide) Microgels Labeled with Phenylboronic Acid Moieties as Multifunctional Ratiometric Probes for Glucose and Temperatures”, Macromolecules, 44, 2282, 2011.
[25] Otto S. Wolfbeis, Hermann E. Posch, Herbert W. Kroneis, “Fiber optical fluorosensor for determination of halothane and or oxygen”, Analytical Chemistry, 57, 2556, 1985.
[26] Matthias I. J. Stich, Michael Schaeferling, Otto S. Wolfbeis, “Multicolor Fluorescent and Permeation-Selective Microbeads Enable Simultaneous Sensing of pH, Oxygen, and Temperature”, Advanced Materials, 21, 2216, 2009.
[27] Sergey M. Borisov, Roman Seifner, Ingo Klimant, “A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, pH and temperature”, Analytical and Bioanalytical Chemistry, 400, 2463, 2011.
[28] Xu-dong Wang, Judith A. Stolwijk, Thomas Lang et al, “Ultra-Small, Highly Stable, and Sensitive Dual Nanosensors for Imaging Intracellular Oxygen and pH in Cytosol”, Journal of the American Chemical Society, 134, 17011, 2012.
[29] Sang Hyuk Im, Gamal E. Khalil, James Callis et al, “Synthesis of polystyrene beads loaded with dual luminophors for self-referenced oxygen sensing”, Talanta, 67, 492, 2005.
[30] Shinkichi Abe, Koji Okamoto and Haruki Madarame, “The development of PIV-PSP hybrid system using pressure sensitive particles”, Measurement Science and Technology, 15, 1153, 2004.
[31] Dani Adil, Guiraud Pascal, Cockx Arnaud, “Local measurement of oxygen transfer around a single bubble by planar laser induced fluorescence”, Chemical Engineering Science, 62, 7245–7252, 2007.
[32] Dae Hun Song, Hyun Dong Kim, Kyung Chun Kim, “Measurement of dissolved oxygen concentration field in a microchannel using PtOEP/PS film”, Journal of Visualization, 14, 295–304, 2011.
[33] Hyun Dong Kim, Seung Jae Yi, Kyung Chun Kim, “Simultaneous measurement of dissolved oxygen concentration and velocity field in microfluidics using oxygen-sensitive particles”, Microfluid Nanofluid, 15, 139, 2013.
[34] Jing-Ru Tu, “Development of Intracellular Nanobiosensor for Oxidative Stress Detection”, A Thesis Submitted to Institute of Biological Science and Technology, NCTU, 2009.
[35] Ingo Klimant, Falk Ruckruh, Gregor Liebsch et al., “Fast Response Oxygen Micro-Optodes Based on Novel Soluble Ormosil Glasses”, Microchimica Acta, 131, 35-46, 1999.
[36] Ilkka Lähdesmäki, Louis D. Scampavia, Craig Beeson et al., “Detection of Oxygen Consumption of Cultured Adherent Cells by Bead Injection Spectroscopy”, Analytical Chemistry, 71, 5248-5252, 1999.
[37] Kerry P., McNamara and Zeev Rosenzweig, “Dye-Encapsulating Liposomes as Fluorescence-Based Oxygen Nanosensors”, Analytical Chemistry, 70, 4853-4859, 1998.
[38] Hao Xu, Jonathan W. Aylott, Raoul Kopelman et al, “A Real-Time Ratiometric Method for the Determination of Molecular Oxygen Inside Living Cells Using Sol-Gel-Based Spherical Optical Nanosensors with Applications to Rat C6 Glioma”, Analytical Chemistry, 73, 4124, 2001.
[39] Aamir A. Khan, Susan K. Fullerton-Shirey and Scott S. Howard, “Easily prepared ruthenium-complex nanomicelle probes for two-photon quantitative imaging of oxygen in aqueous media”, RSC Advances, 5, 291, 2015.
[40] Scott S. Howard, Adam Straub, Nicholas G. Horton et al., “Frequency-multiplexed in vivo multiphoton phosphorescence lifetime microscopy”, Nature Photonics, 7, 33–37, 2013.
[41] Sava Sakadžić, Emmanuel Roussakis, Mohammad A Yaseen et al., “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue”, Nature Methods, 7, 755–759, 2010.
[42] Jérôme Lecoq, Alexandre Parpaleix, Emmanuel Roussakis et al., “Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels”, Nature Medicine, 17, 893–898, 2011.
[43] S. M. Shams Kazmi, Anthony J. Salvaggio, Arnold D. Estrada et al., “Three-dimensional mapping of oxygen tension in cortical arterioles before and after occlusion”, Biomedical Optics Express, 4, 1061–1073, 2013.
[44] Joel A. Spencer, Francesca Ferraro, Emmanuel Roussakis, Sergei A. Vinogradov et al., “Direct measurement of local oxygen concentration in the bone marrow of live animals”, Nature, 508, 269–273, 2014.
[45] Hiroaki Onoe, Teru Okitsu, Akane Itou et al, “Metre-long cell-laden microfibres exhibit tissue morphologies and functions”, Nature Materials, 12, 584, 2013.
[46] Su-Jung Shin, Ji-Young Park, Jin-Young Lee et al., ““On the fly” continuous generation of alginate fibers using a microfluidic device”, Langmuir, 23, 9104–9108, 2007.
[47] Kwang Ho Lee, Su Jung Shin, Yongdoo Park, Sang-Hoon Lee, “Synthesis of cell-laden alginate hollow fibers using microfluidic chip and microvascularized tissue-engineering applications”, Small, 5, 1264–1268, 2009.
[48] Shinji Sugiura, Tatsuya Oda, Yasuyuki Aoyagi et al., “Tubular gel fabrication and cell encapsulation in laminar flow stream formed by microfabricated nozzle array”, Lab on a Chip, 8, 1255–1257, 2008.
[49] Edward Kang, Gi Seok Jeong, Yoon Young Choi et al., “Digitally tunable physicochemical coding of material composition and topography in continuous microfibers”, Nature Materials, 10, 877–883, 2011.
[50] Yamada M., Sugaya S., Naganuma Y., Seki M., “Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking”, Soft Matter, 8, 3122–3130, 2012.
[51] Nurazhani Abdul Raof, Michael R. Padgen , Alison R. Gracias et al., “One-dimensional self-assembly of mouse embryonic stem cells using an array of hydrogel microstrands”, Biomaterials, 32, 4498–4505, 2011.
[52] Min Hu, Rensheng Deng, Karl M. Schumacher et al., “Hydrodynamic spinning of hydrogel fibers”, Biomaterials, 31,863–869, 2010.
[53] Shuming Zhang, Megan A. Greenfield, Alvaro Mata et al., “A self-assembly pathway to aligned monodomain gels”, Nature Materials, 9, 594–601, 2010.
[54] Zhen Gu, Tram T. Dang, Daniel G. Anderson et al., “Glucose-Responsive Microgels Integrated with Enzyme Nanocapsules for Closed-Loop Insulin Delivery”, ACS Nano, 7, 6758–6766, 2013.
[55] A.K. vam der Vegt, L.E. Govaert, “Polymeren”, van keten tot kunstof, 2005.
[56] Nicholas A. Peppas, “Hydrogels in medicine and pharmacy”, Florida: CRC Press, 1987.
[57] Alec B. Scranton, Christopher N. Bowman, Robert W. Peiffer, “photopolymerization fundamentals and applications”, New Orleans: ACS Publishers, 1996.
[58] Yong Qiu, Kinam Park, “Environment-sensitive hydrogels for drug delivery”, Advanced Drug Delivery Reviews, 53, 321–339, 2001.
[59] Vinod Singh, S S Bushetti, Raju Appala et al., “Stimuli-sensitive hydrogels: A novel ophthalmic drug delivery system”, Indian Journal of Ophthalmology, 58, 477–487, 2010.
[60] Brandon V. Slaughter, Shahana S. Khurshid, Omar Z. Fisher et al., “Hydrogels in Regenerative Medicine”, Advanced Materials, 21, 3307–3329, 2009.
[61] Yuanting Xu, Li Li, Xixun Yu et al., “Feasibility study of a novel crosslinking reagent (alginate dialdehyde) for biological tissue fixation”, Carbohydrate Polymers, 87, 1589–1595, 2011.
[62] Chaenyung Cha, Eleni Antoniadou, Minkyung Lee et al., “Tailoring Hydrogel Adhesion to Polydimethylsiloxane Substrates Using Polysaccharide Glue”, Angewandte Chemie, 52, 6949–6952, 2013.
[63] 維基百科:聚苯乙烯, Available at: https://zh.wikipedia.org/wiki/%E8%81%9A%E8%8B%AF%E4%B9%99%E7%83%AF
, Accessed 14 December 2015.
[64] Joseph R. Lakowicz, “Principles of Fluorescence Spectroscopy (3rd ed.)”, Springer, 2006.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *