|
[1] 宋信文,梁晃千, “建立人類的身體工房 組織工程”, 科學發展, 362, 6-11, 2003. [2] 劉華昌等人, “再生醫學”, 教育部顧問室「生物及醫學科技人才培育先導型計畫」幹細胞與組織工程教學資源中, 2008. [3] World Health Organization. Global Health Estimates: Deaths by Cause, Age, Sex and Country, 2000-2012. Geneva, WHO, 2014. [4] International Diabetes Federation: Diabetes Atlas, Available at: http://www.diabetesatlas.org/, Accessed 4 April 2014. [5] 張淳堆, “如何使用胰島素”, 財團法人糖尿病關懷基金會, 2011. [6] Hsing-Wen Sung et al, “Preparation and Characterization of Nanoparticles Shelled with Chitosan for Oral Insulin Delivery”, Biomacromolecules, 8, 146-152, 2007. [7] You-Qing Wang, “Artificial Pancreas: State-of-the-Art, Challenges and Outlook”, Chinese Journal of Biomedical Engineering, 32, No.3, 2013. [8] Zhen Gu, Daniel G. Anderson et al, “Glucose-Responsive Microgels Integrated with Enzyme Nanocapsules for Closed-Loop Insulin Delivery”, ACS Nano, 7, 6758–6766, 2013. [9] Tram T. Dang, Robert Langer, Daniel G. Anderson et al, “Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug”, Biomaterials, 34, 5792-5801, 2013. [10] Zhen Gu, Robert Langer, Daniel G. Anderson et al, “Injectable Nano-Network for Glucose-Mediated Insulin Delivery”, ACS Nano, 7, 4194-4201, 2013. [11] Sarina Arain, Gernot T. John, Christian Krause et al., “Characterization of microtiterplates with integrated optical sensors for oxygen and pH, and their applications to enzyme activity screening, respirometry, and toxicological assays”, Sensors and Actuators B: Chemical, 113, 639, 2006. [12] Nicolas B. Borchert, Gelii V. Ponomarev, Joe P. Kerry, and Dmitri B. Papkovsky, “O2/pH Multisensor Based on One Phosphorescent Dye”, Analytical Chemistry, 83, 18, 2011. [13] Anna S. Kocincová, Stefan Nagl, Sarina Arain et al., “Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH”, Biotechnology and Bioengineering, 100, 430, 2008. [14] Lisa M. Onishi, John M. Prausnitz, and John Newman, “Water-Nafion Equilibria. Absence of Schroeder's Paradox”, Analytical Chemistry, 79, 60, 2007 [15] Ganna S. Vasylevska, Sergey M. Borisov, Christian Krause, “Indicator-Loaded Permeation-Selective Microbeads for Use in Fiber Optic Simultaneous Sensing of pH and Dissolved Oxygen”, Chemistry of Materials, 18, 4609,2006. [16] Muhammet Erkan Köse, Bruce F. Carroll, and Kirk S. Schanze, “Preparation and Spectroscopic Properties of Multiluminophore Luminescent Oxygen and Temperature Sensor Films”, Langmuir, 21, 9121, 2005. [17] Sergey M. Borisov, Anna S. Vasylevska, Christian Krause and Otto S. Wolfbeis, “Composite Luminescent Material for Dual Sensing of Oxygen and Temperature”, Advanced Functional Materials, 16, 1536, 2006. [18] Lorenz H. Fischer, Matthias I. J. Stich, Otto S. Wolfbeis et al., “Red- and Green-Emitting Iridium(III) Complexes for a Dual Barometric and Temperature-Sensitive Paint”, Chemistry - A European Journal, 15, 10857, 2009. [19] Matthias I. J. Stich, Stefan Nagl, Otto S. Wolfbeis et al., “A Dual Luminescent Sensor Material for Simultaneous Imaging of Pressure and Temperature on Surfaces”, Advanced Functional Materials, 18, 1399, 2008. [20] Sergey M. Borisov, Christian Krause, Sarina Arain, Otto S. Wolfbeis, “Composite Material for Simultaneous and Contactless Luminescent Sensing and Imaging of Oxygen and Carbon Dioxide”, Advanced Materials, 18, 1511, 2008. [21] Claudia R. Schroeder, Gerhard Neurauter, Ingo Klimant, “Luminescent dual sensor for time-resolved imaging of pCO2 and pO2 in aquatic systems”, Microchimica Acta, 158, 205, 2007. [22] Susumu Uchiyama , Atsushi Ohshima , Shota Nakamura et al., “Complete Thermal-Unfolding Profiles of Oxidized and Reduced Cytochromes c”, Journal of the American Chemical Society, 126, 3032, 2004. [23] Xu-dong Wang, Robert J. Meier and Otto S. Wolfbeis, “A Fluorophore-Doped Polymer Nanomaterial for Referenced Imaging of pH and Temperature with Sub-Micrometer Resolution”, Advanced Functional Materials, 22, 4202, 2012. [24] Di Wang, Tao Liu, Jun Yin, and Shiyong Liu, “Stimuli-Responsive Fluorescent Poly(N-isopropylacrylamide) Microgels Labeled with Phenylboronic Acid Moieties as Multifunctional Ratiometric Probes for Glucose and Temperatures”, Macromolecules, 44, 2282, 2011. [25] Otto S. Wolfbeis, Hermann E. Posch, Herbert W. Kroneis, “Fiber optical fluorosensor for determination of halothane and or oxygen”, Analytical Chemistry, 57, 2556, 1985. [26] Matthias I. J. Stich, Michael Schaeferling, Otto S. Wolfbeis, “Multicolor Fluorescent and Permeation-Selective Microbeads Enable Simultaneous Sensing of pH, Oxygen, and Temperature”, Advanced Materials, 21, 2216, 2009. [27] Sergey M. Borisov, Roman Seifner, Ingo Klimant, “A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, pH and temperature”, Analytical and Bioanalytical Chemistry, 400, 2463, 2011. [28] Xu-dong Wang, Judith A. Stolwijk, Thomas Lang et al, “Ultra-Small, Highly Stable, and Sensitive Dual Nanosensors for Imaging Intracellular Oxygen and pH in Cytosol”, Journal of the American Chemical Society, 134, 17011, 2012. [29] Sang Hyuk Im, Gamal E. Khalil, James Callis et al, “Synthesis of polystyrene beads loaded with dual luminophors for self-referenced oxygen sensing”, Talanta, 67, 492, 2005. [30] Shinkichi Abe, Koji Okamoto and Haruki Madarame, “The development of PIV-PSP hybrid system using pressure sensitive particles”, Measurement Science and Technology, 15, 1153, 2004. [31] Dani Adil, Guiraud Pascal, Cockx Arnaud, “Local measurement of oxygen transfer around a single bubble by planar laser induced fluorescence”, Chemical Engineering Science, 62, 7245–7252, 2007. [32] Dae Hun Song, Hyun Dong Kim, Kyung Chun Kim, “Measurement of dissolved oxygen concentration field in a microchannel using PtOEP/PS film”, Journal of Visualization, 14, 295–304, 2011. [33] Hyun Dong Kim, Seung Jae Yi, Kyung Chun Kim, “Simultaneous measurement of dissolved oxygen concentration and velocity field in microfluidics using oxygen-sensitive particles”, Microfluid Nanofluid, 15, 139, 2013. [34] Jing-Ru Tu, “Development of Intracellular Nanobiosensor for Oxidative Stress Detection”, A Thesis Submitted to Institute of Biological Science and Technology, NCTU, 2009. [35] Ingo Klimant, Falk Ruckruh, Gregor Liebsch et al., “Fast Response Oxygen Micro-Optodes Based on Novel Soluble Ormosil Glasses”, Microchimica Acta, 131, 35-46, 1999. [36] Ilkka Lähdesmäki, Louis D. Scampavia, Craig Beeson et al., “Detection of Oxygen Consumption of Cultured Adherent Cells by Bead Injection Spectroscopy”, Analytical Chemistry, 71, 5248-5252, 1999. [37] Kerry P., McNamara and Zeev Rosenzweig, “Dye-Encapsulating Liposomes as Fluorescence-Based Oxygen Nanosensors”, Analytical Chemistry, 70, 4853-4859, 1998. [38] Hao Xu, Jonathan W. Aylott, Raoul Kopelman et al, “A Real-Time Ratiometric Method for the Determination of Molecular Oxygen Inside Living Cells Using Sol-Gel-Based Spherical Optical Nanosensors with Applications to Rat C6 Glioma”, Analytical Chemistry, 73, 4124, 2001. [39] Aamir A. Khan, Susan K. Fullerton-Shirey and Scott S. Howard, “Easily prepared ruthenium-complex nanomicelle probes for two-photon quantitative imaging of oxygen in aqueous media”, RSC Advances, 5, 291, 2015. [40] Scott S. Howard, Adam Straub, Nicholas G. Horton et al., “Frequency-multiplexed in vivo multiphoton phosphorescence lifetime microscopy”, Nature Photonics, 7, 33–37, 2013. [41] Sava Sakadžić, Emmanuel Roussakis, Mohammad A Yaseen et al., “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue”, Nature Methods, 7, 755–759, 2010. [42] Jérôme Lecoq, Alexandre Parpaleix, Emmanuel Roussakis et al., “Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels”, Nature Medicine, 17, 893–898, 2011. [43] S. M. Shams Kazmi, Anthony J. Salvaggio, Arnold D. Estrada et al., “Three-dimensional mapping of oxygen tension in cortical arterioles before and after occlusion”, Biomedical Optics Express, 4, 1061–1073, 2013. [44] Joel A. Spencer, Francesca Ferraro, Emmanuel Roussakis, Sergei A. Vinogradov et al., “Direct measurement of local oxygen concentration in the bone marrow of live animals”, Nature, 508, 269–273, 2014. [45] Hiroaki Onoe, Teru Okitsu, Akane Itou et al, “Metre-long cell-laden microfibres exhibit tissue morphologies and functions”, Nature Materials, 12, 584, 2013. [46] Su-Jung Shin, Ji-Young Park, Jin-Young Lee et al., ““On the fly” continuous generation of alginate fibers using a microfluidic device”, Langmuir, 23, 9104–9108, 2007. [47] Kwang Ho Lee, Su Jung Shin, Yongdoo Park, Sang-Hoon Lee, “Synthesis of cell-laden alginate hollow fibers using microfluidic chip and microvascularized tissue-engineering applications”, Small, 5, 1264–1268, 2009. [48] Shinji Sugiura, Tatsuya Oda, Yasuyuki Aoyagi et al., “Tubular gel fabrication and cell encapsulation in laminar flow stream formed by microfabricated nozzle array”, Lab on a Chip, 8, 1255–1257, 2008. [49] Edward Kang, Gi Seok Jeong, Yoon Young Choi et al., “Digitally tunable physicochemical coding of material composition and topography in continuous microfibers”, Nature Materials, 10, 877–883, 2011. [50] Yamada M., Sugaya S., Naganuma Y., Seki M., “Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking”, Soft Matter, 8, 3122–3130, 2012. [51] Nurazhani Abdul Raof, Michael R. Padgen , Alison R. Gracias et al., “One-dimensional self-assembly of mouse embryonic stem cells using an array of hydrogel microstrands”, Biomaterials, 32, 4498–4505, 2011. [52] Min Hu, Rensheng Deng, Karl M. Schumacher et al., “Hydrodynamic spinning of hydrogel fibers”, Biomaterials, 31,863–869, 2010. [53] Shuming Zhang, Megan A. Greenfield, Alvaro Mata et al., “A self-assembly pathway to aligned monodomain gels”, Nature Materials, 9, 594–601, 2010. [54] Zhen Gu, Tram T. Dang, Daniel G. Anderson et al., “Glucose-Responsive Microgels Integrated with Enzyme Nanocapsules for Closed-Loop Insulin Delivery”, ACS Nano, 7, 6758–6766, 2013. [55] A.K. vam der Vegt, L.E. Govaert, “Polymeren”, van keten tot kunstof, 2005. [56] Nicholas A. Peppas, “Hydrogels in medicine and pharmacy”, Florida: CRC Press, 1987. [57] Alec B. Scranton, Christopher N. Bowman, Robert W. Peiffer, “photopolymerization fundamentals and applications”, New Orleans: ACS Publishers, 1996. [58] Yong Qiu, Kinam Park, “Environment-sensitive hydrogels for drug delivery”, Advanced Drug Delivery Reviews, 53, 321–339, 2001. [59] Vinod Singh, S S Bushetti, Raju Appala et al., “Stimuli-sensitive hydrogels: A novel ophthalmic drug delivery system”, Indian Journal of Ophthalmology, 58, 477–487, 2010. [60] Brandon V. Slaughter, Shahana S. Khurshid, Omar Z. Fisher et al., “Hydrogels in Regenerative Medicine”, Advanced Materials, 21, 3307–3329, 2009. [61] Yuanting Xu, Li Li, Xixun Yu et al., “Feasibility study of a novel crosslinking reagent (alginate dialdehyde) for biological tissue fixation”, Carbohydrate Polymers, 87, 1589–1595, 2011. [62] Chaenyung Cha, Eleni Antoniadou, Minkyung Lee et al., “Tailoring Hydrogel Adhesion to Polydimethylsiloxane Substrates Using Polysaccharide Glue”, Angewandte Chemie, 52, 6949–6952, 2013. [63] 維基百科:聚苯乙烯, Available at: https://zh.wikipedia.org/wiki/%E8%81%9A%E8%8B%AF%E4%B9%99%E7%83%AF , Accessed 14 December 2015. [64] Joseph R. Lakowicz, “Principles of Fluorescence Spectroscopy (3rd ed.)”, Springer, 2006.
|