帳號:guest(3.147.74.197)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪碩廷
作者(外文):Hong, Shuo Ting
論文名稱(中文):次波長線性偏振片應用於光學式加速度感測器之研究
論文名稱(外文):A Study on Sub-wavelength Wire-grid Polarizer Used in Optical Approach Accelerometer
指導教授(中文):傅建中
指導教授(外文):Chien, Chung Fu
口試委員(中文):方維倫
謝哲偉
鄒慶福
楊尚達
傅建中
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:102035522
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:80
中文關鍵詞:雷射干涉微影線性偏振片電子束蒸鍍出平面加速度計
外文關鍵詞:Laser interference lithographyWire-grid polarizerE-gun evaporationOut-of-plane accelerometer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:90
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文為利用雷射干涉微影製作奈米級一維周期性結構,作為線性偏振片之研究。線性偏振片製作前使用G-Solver光柵模擬軟體,分析並優化線性偏振片之P-偏振穿透率及消光比數值,製作過程透過雷射干涉微影、電子束蒸鍍鋁金屬與掀離製程,在矽基板上製作周期為400 nm之雙層及單層鋁線性偏振片。
將所製備的兩種偏振片於1300 nm ~ 1590 nm紅外光波段進行光學特性量測,在入射光角度0°時,P-偏振穿透率分別約為13 % ~ 34 %與39 % ~ 69 %,有掀離鋁金屬的線性偏振片有較高的P-偏振穿透率。由於光柵周期小於1/2入射光波長,因此只會產生零階繞射,藉由偏轉線性偏振片0° ~ 80°改變紅外光源入射角度,量測不同的P-偏振與S-偏振反射與穿透率能量變化,入射光角度為0° ~ 50°與60° ~ 80°時,P-偏振穿透率隨角度變化最為明顯,光波長1550 nm下有較大的消光比數值。
線性偏振片目前主要應用於液晶顯示器中,作為增加出光亮度與提升光使用率之元件,本論文提出另一應用想法,以1550 nm偏振光作為訊號源,將線性偏振片與懸臂樑-質量塊結構感測模組整合成一微型加速度感測系統。線性偏振片會製作在質量塊上方,當加速度施加於感測模組上時,質量塊結構受到慣性力作用而產生偏轉,相對改變了光入射之角度,產生不同的P-偏振與S-偏振數值,可量測P-偏振穿透率變化,藉由光學具有高精密度量測之特性,可提高元件感測靈敏度及精確度。因此,本論文藉由ANSYS有限元素分析軟體,針對彎曲式懸臂樑結構之參數,做靜態模態分析與動態分析,萃取出位移靈敏度較高之參數,作為未來線性偏振片應用於光學式加速度感測模組之設計。
關鍵字:雷射干涉微影、線性偏振片、電子束蒸鍍、出平面加速度計
This thesis used laser interference lithography to fabricate nanoscale one-dimension periodic structure for a study of the wire-grid polarizer. This study used G-Solver grating simulation software to analyze and optimize the P-polarized transmission values and extinction ratio values for wire-grid polarizer. The production process used laser interference lithography, electron beam evaporate aluminum metal and lift-off process to fabricate 400 nm periodic bilayer and single layer aluminum wire-grid polarizer on the silicon substrate.
These two kinds of wire-grid polarizers were prepared to measure the characteristics of infrared source in 1300 nm ~ 1590 nm. When the incident angle is 0°, P-polarized transmittance values were about 13 % ~ 34 % and 39 % ~ 69 % respectively. Wire-grid polarizer with lift-off process has a higher P-polarized transmission. Due to the grating period is less than half wavelength of incident light; therefore, only have zero-order diffraction. By deflected the wire-grid polarizer 0^°~ 80^° to change the incidence angle of infrared source, different P- and S-polarized reflection and transmission intensity values were recorded. When the incident angle is 0° ~ 50° and 60° ~ 80° P-polarized has the most obvious change with angle, infrared source wavelength at 1550 nm have a greater extinction ratio.
Wire-gird polarizer is mainly used in liquid crystal displays to enhance the brightness and improve the utilization of light. This thesis proposes the idea of another application. Use 1550 nm polarized light as the signal source, wire grid polarizer and cantilever beam - proof mass structure will be integrated into a micro acceleration sensing system. Due to the wire-grid polarizer will be fabricated on the surface of accelerometer’s proof mass, so that when the acceleration act on the sensing module, proof mass will be affected by the inertial force and generated deflection, wire-grid polarizer varies with the angle of incident light produce different values of P-polarized and S-polarized intensity, photodetector could be used to measure the variation of P-polarized transmission intensity. With optics has a high precision measurement characteristic to improve the sensing device sensitivity and accuracy. Therefore, this thesis used ANSYS finite element analysis software to do static modal analysis and dynamic analysis for different serpentine spring structures. Extract the highest displacement sensitivity for the design parameters as future wire-grid polarizer applied to design the optical acceleration sensing module.
Key words: Laser interference lithography、Wire-grid polarizer、E-gun evaporation、Out-of-plane accelerometer

摘 要 i
Abstract ii
致 謝 iv
目 錄 v
圖目錄 viii
表目錄 xiii
第一章 緒 論 1
1.1 研究背景 1
1.2 文獻回顧 4
1.2.1 雷射干涉微影文獻回顧 4
a. 振幅分離式干涉 4
b. 波前分離式干涉 5
1.2.2 線性偏振片文獻回顧 6
a. 奈米壓印微影技術 (Nanoimprint lithography, NIL) 6
b. 液橋轉印技術 (Liquid-bridge-mediated transfer printing) 7
c. 電子束微影技術 (Electron-beam lithography) 8
d. 雷射干涉微影技術 (Laser interference lithography, LIL) 9
1.2.3 加速度計文獻回顧 10
a. 壓阻式 (Piezoresistor) 10
b. 壓電式 (Piezoelectric) 13
c. 電容式 (Capacitive) 15
d. 熱感應式 (Thermal sensing) 19
e. 穿隧電流式 (Tunneling current) 21
f. 光學式 (Optical) 23
1.3 研究動機 26
1.4 論文架構 28
第二章 研究原理與特性分析 30
2.1 前言 30
2.2 線性偏振片 30
2.2.1 原理 30
2.2.2 光學特性分析 31
2.2.3 工作周期改變之光學特性分析 35
2.2.4 入射光偏移之光學特性分析 36
2.3 加速度計結構設計 37
2.3.1 原理 37
2.3.2 加速度計結構設計探討 39
2.3.3 加速度計結構設計與模擬分析 42
2.3.4 模態分析 43
2.3.5 位移靈敏度分析 45
2.3.6 偏轉角度分析 45
2.3.7 元件之應變與應力模擬結果 48
2.3.8 元件之各階模態模擬結果 49
第三章 研究步驟與方法 51
3.1 實驗流程 51
3.2 雷射干涉微影技術 53
3.2.1 原理 53
3.2.2 雷射干涉微影光路架構 54
3.3 電子束蒸鍍技術 56
3.3.1 原理 56
3.3.2 電子束蒸鍍製程設備 56
3.4 掀離製程 57
3.5 線性偏振片光學量測 58
3.6 量測設備 59
3.6.1 場發射掃描式電子顯微鏡 (FE-SEM) 59
3.6.2 紅外線雷射 59
第四章 結果與討論 60
4.1 雷射干涉微影結果 60
4.2 電子束蒸鍍鋁結果 62
4.3 掀離製程結果 64
4.4 線性偏振片光學量測結果 66
4.4.1 紅外光各波段之穿透率量測結果 67
4.4.2 雙層鋁線性偏振片光學量測結果 68
4.4.3 單層鋁線性偏振片光學量測結果 69
4.4.4 雙層與單層鋁線性偏振片量測結果比較 72
第五章 結論與未來方向 74
5.1 結論 74
5.2 未來方向 75
參考文獻 78
[1] S. H. Kim, J.D. Park and K. D. Lee, “Fabrication of a Nano-wire Grid Polarizer for Brightness Enhancement in Liquid Crystal Display” Institute of Physics Publishing, Nanotechnology 17, pp.4436–4438, 2006.
[2] http://www.eetimes.com/document.asp?doc_id=1320035
[3] http://www.techonlineindia.com/techonline/guestblog-blog/168657/2011-mems
[4] http://www.electronics-eetimes.com/en/inertial-sensor-market-to-grow-20.3-annually-to-reach-usd2.56b-in-2015.html?cmp_id=7&news_id=222906055
[5] M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, “Sub-100 nm Metrology Using Interferometrically Produced Fiducials” Journal of Vacuum Science & Technology B, 17, 2692, 1999.
[6] Annual Report 2005, Nanostructures Technology, Reserch and Applications, Chapter 9, Interference Lithography, NanoStructures Laboratory, MIT.
[7] K. Berggren, R. Menon, M. K. Mondol, E. Moon, M. L. Schattenburg and H. I. Smith, “Nanostructures Technology, Research and Applications, Chapter 25. Quantum Nanostructures and Nanofabrication”, MIT, pp.25-5~25-8.
[8] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of Sub-25 nm Vias and Trenches in Polymers” Appl. Phys. Lett. 67, pp. 3114–6, Sep.1995.
[9] S. W. Ahn, K. D. Lee, J.-S. Kim, S. H. Kim, J. D. Park, S.-H. Lee and P.W. Yoon, “Fabrication of a 50 nm Half-pitch Wire Grid Polarizer Using Nanoimprint Lithography” Institute of Physics Publishing, Nanotechnology Vol. 16, pp. 1874–1877, 2005.
[10] B. H. Lee, Y. H. Cho, H. Lee, K. D. Lee, S. H. Kim, and M. M. Sung, “High-Resolution Patterning of Aluminum Thin Films with a Water-Mediated Transfer Process” Advanced Materials, Vol. 19, Issue 13, pp. 1714–1718, July, 2007.
[11] T. Weber, H.-J. Fuchs, H. Schmidt , E. B. Kley and A. Tünnermann, “Wire-grid Polarizer for the UV Spectral Region” Proc. of SPI, Vol. 7205 720504-1, 2009.
[12] M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, L. Wang, C. C. Wu, and S. C. Lee, “White Organic Light-Emitting Diode With Linearly Polarized Emission” IEEE Photonics Technology Letters, Vol. 25, No. 14, July 15, 2013.
[13] L. Roylance and J. Angell, “A Batch-fabricated Silicon Accelerometer” IEEE Trans. Electron Devices, Vol. 26, pp. 1911-7, Dec. 1979.
[14] E. Eklund and A. Shkel, “Single-mask Fabrication of High-G Piezoresistive Accelerometers with Extended Temperature Range” J. Micromechanics and Microengineering, Vol. 17, pp.730-736, Mar. 2007.
[15] C. Xue, S. Chen, H. Qiao, W. Zhang, J. Xiong, B. Zhang and G. Zhang, “Development of a Novel Two Axis Piezoresistive Micro Accelerometer Based on Silicon” J. Sensors, Vol. 6, pp.149-158, Feb. 2008.
[16] H. Hsieh, H. Chang, C. Hu, C. Cheng and W. Fang, “A Novel Stress Isolation Guard-ring Design for the Improvement of a Three-axis Piezoresistive Accelerometer” J. Micromechanics and Microengineering, Vol. 21, No. 10, Sep. 2011.
[17] Y. Luo, “Cross-axis Sensitivity Enhancement for a Quad Beam Piezoresistive Accelerometer” Proc. CCECE 2013, pp. 1-4.
[18] Y. Kanda, “Piezoresistance Effect of Silicon” J. Sensors Actuators A, Vol. 28, pp. 83-91, 1991.
[19] L. Wang, A. Richard, J. Wolf, Y. Wang, K. Ken, L. Zou and J. Robert, “Design, Fabrication and Measurement of High-sensitivity Piezoelectric Micro electromechanical Systems Accelerometers” J. MEMS, Vol. 12, No. 4, pp. 433-439, Aug. 2003.
[20] T. Kobayashi1, H. Okada, T. Masuda, R. Maeda and T. Itoh, “A Digital Output Piezoelectric Accelerometer using a Pb(Zr, Ti)O3 Thin Film Array Electrically Connected in Series” Smart Mater. Struct. Vol. 19, No. 10, Sep. 2010.
[21] Q. Zou, W. Tan, E. Kim and G. Loeb, “Single- and Triaxis Piezoelectric-Bimorph Accelerometers” J. MEMS, Vol. 17, No. 1, Feb. 2008.
[22] C. Hindrichsen, N. Almind, S. Brodersen, R. Moller, K. Hansen and E. Thomsen, “Triaxial MEMS Accelerometer with Screen Printed PZT Thick Film” J. Electroceramics, Vol. 25, pp.108-115, Oct. 2010.
[23] N. Yazdi, F. Ayazi and K. Najafi, “Micromachined Inertial Sensors” Proceedings of The IEEE, Vol. 86, No. 8, Aug. 1998.
[24] H. Xie and G. Fedder, “Vertical Comb-finger Capacitive Actuation and Sensing for COMS-MEMS” J. Sensors and Actuators A, Vol. 95, pp. 212-221, Jan. 2002.
[25] N. Yazdi and K. Najafi, “An All-Silicon Single-Wafer Micro-g Accelerometer with a Combined Surface and Bulk Micromachining Process” J. MEMS, Vol. 9, No. 4, Dec. 2000.
[26] H. Qu, D. Fang and H. Xie, “A Monolithic CMOS-MEMS 3-axis Accelerometer with a Low-Noise, Low-power Dual-chopper Amplifier” J. Sensors, Vol. 8, No. 9, pp. 1511-1518, Sep. 2008.
[27] C. Hsu, M. Yip and W. Fang, “Implementation of a Gap-closing Differential Capacitive Sensing Z-axis Accelerometer on a SOI Wafer” J. Micromechanics and Microengineering, Vol. 19, No. 7, Jun. 2009.
[28] Q. Hu, C. Gao, Y. Hao, D. Zhang, G. Yan, Y. Zhang, “Design and Fabrication of a MEMS Capacitive Accelerometer Based on Double-device-layers SOI Wafer” Proc. NEMS, 2010, pp. 1036-1039.
[29] S. Chen and C. Shen, “A Novel Two-axis CMOS Accelerometer Based on Thermal Convection” IEEE Transactions on Instrumentation and Measurement, Vol. 57, No. 8, pp.1572-1577, Aug. 2008.
[30] J. Bahari and A. Leung, “Micromachined Three-axis Thermal Accelerometer with a Single Composite Heater” J. Micromechanics and Microengineering, Vol. 21, Jun. 2011.
[31] C. Liu and T. Kenny, “A High-precision, Wide-bandwidth Micromachined Tunneling Accelerometer” J. MEMS, Vol. 10, No. 3, pp. 425-433, Sep. 2001.
[32] W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. d. Rooij, “Applications of SOI-Based Optical MEMS” IEEE Journal On Selected Topics in Quantum Electronics, Vol. 8, No. 1, January/February, 2002.
[33] K. Zandi, B. Wong, J. Zou, R.V. Kruzelecky, W. Jamroz and Y. A. Peter, “In-plane Silicon-on-Insulator Optical MEMS Accelerometer Using Waveguide Fabry perot Microcavity with Silicon/Air Bragg Mirrors” Proc. Micro Electro Mechanical Systems (MEMS), 24-28 Jan. 2010, pp. 839-842.
[34] B. Y. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings” IEEE Photonics Technology Letters, Vol. 26, No. 10, May 15, 2014.
[35] X. J. Yu and H. S. Kwok, “Optical Wire-grid Polarizers at Oblique Angles of ncidence” Journal of Applied Physics, Volume 93, No. 8, 15 April 2003.
[36] G. K. Fedder, “Simulation of Microelectromechanical Systems” Dept. of Electrical Engineering and Computer Science. 1994, Univ. of California at Berkeley.
[37] G. M. Rebeiz, “RF MEMS: Theory, Design, and Technology” University of Michigan. 2003, pp. 30-31. Hoboken, NJ : J. Wiley.
[38] 呂建國, 康士廷, “ANSYS Workbench14 有限元分析自學手冊”2013, 5~7頁, 人民郵電出版社
[39] M. E. Walsh, “On the Design of Lithographic Interferometers and Their Application” Massachusetts Institute of Technology, September 2004, pp.32~34.

(此全文未開放授權)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *