|
1 Stewart, B. W. W., C.P. World Cancer Report, International Agency for Research on Cancer. (2014). 2 Jensen, K. F. Microreaction engineering - is small better? Chem Eng Sci 56, 293-303, doi:Doi 10.1016/S0009-2509(00)00230-X (2001). 3 Nachtigall, S., Zedel, D. & Kraume, M. Analysis of drop deformation dynamics in turbulent flow. Chinese J Chem Eng 24, 264-277, doi:10.1016/j.cjche.2015.06.003 (2016). 4 Garstecki, P., Fuerstman, M. J., Stone, H. A. & Whitesides, G. M. Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up. Lab on a Chip 6, 437-446, doi:10.1039/b510841a (2006). 5 Gupta, A., Murshed, S. M. S. & Kumar, R. Droplet formation and stability of flows in a microfluidic T-junction. Appl Phys Lett 94, doi:Artn 164107 10.1063/1.3116089 (2009). 6 Wu, L., Li, G. P., Xu, W. & Bachman, M. Droplet formation in microchannels under static conditions. Appl Phys Lett 89, doi:Artn 144106 10.1063/1.2358857 (2006). 7 Lin, Y. H., Lee, C. H. & Lee, G. B. Droplet formation utilizing controllable moving-wall structures for double-emulsion applications. J Microelectromech S 17, 573-581, doi:10.1109/Jmems.2008.924273 (2008). 8 Lin, Y. H., Lee, C. H. & Lee, G. B. A new droplet formation chip utilizing controllable moving-wall structures for double emulsion applications. Proc Ieee Micr Elect, 22-25 (2008). 9 Zeng, S., Li, B., Su, X., Qin, J. & Lin, B. Microvalve-actuated precise control of individual droplets in microfluidic devices. Lab Chip 9, 1340-1343, doi:10.1039/b821803j (2009). 10 Tung, Y. C. et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136, 473-478, doi:10.1039/c0an00609b (2011). 11 Pan, J., Stephenson, A. & Abell, C. Quantitative tracking of the growth of individual algal cells in microdroplet compartments. Abstr Pap Am Chem S 241 (2011). 12 Gu, H., Duits, M. H. & Mugele, F. Droplets formation and merging in two-phase flow microfluidics. Int J Mol Sci 12, 2572-2597, doi:10.3390/ijms12042572 (2011).
13 Collins, D. J., Alan, T., Helmerson, K. & Neild, A. Surface acoustic waves for on-demand production of picoliter droplets and particle encapsulation. Lab on a Chip 13, 3225-3231, doi:10.1039/c3lc50372k (2013). 14 Negative Tone Photoresist Formulations 50-100. MICROCHEM. 15 Thangawng, A. L., Ruoff, R. S., Swartz, M. A. & Glucksberg, M. R. An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization. Biomed Microdevices 9, 587-595, doi:10.1007/s10544-007-9070-6 (2007). 16 Adeyiga O, K. S., Paiè P, Di Carlo D. Research highlights: surface-based microfluidic control. Lab on a Chip 15, doi:10.1039/c5lc90071a (2015). 17 Schomburg, W. K. Introduction to microsystem design. (Springer, 2011). 18 D. Dilip, M. S. B., Raghuraman N. Govardhan. Effect of absolute pressure on flow through a textured hydrophobic microchannel. Microfluidics and Nanofluidics 19, 1409-1427, doi:10.1007/s10404-015-1655-4 (2015). 19 Hung, L. H. et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab on a Chip 6, 174-178, doi:10.1039/b513908b (2006). 20 Ward, T., Faivre, M., Abkarian, M. & Stone, H. A. Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis 26, 3716-3724, doi:10.1002/elps.200500173 (2005). 21 Liu, W. T. et al. Propagation of SARS coronavirus with human promonocyte cell line, HL-CZ. J Clin Virol 28, S91-S91 (2003). 22 Hilal, T. & Romond, E. H. ERBB2 (HER2) Testing in Breast Cancer. Jama-J Am Med Assoc 315, 1280-1281 (2016). 23 Tangen, U. et al. DNA-library assembly programmed by on-demand nano-liter droplets from a custom microfluidic chip. Biomicrofluidics 9, doi:Artn 044103 10.1063/1.4926616 (2015). 24 Nisisako, T., Torii, T. & Higuchi, T. Droplet formation in a microchannel network. Lab on a Chip 2, 24-26, doi:10.1039/b108740c (2002). 25 Patra, B., Peng, C. C., Liao, W. H., Lee, C. H. & Tung, Y. C. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Sci Rep-Uk 6, doi:ARTN 21061 10.1038/srep21061 (2016). 26 Stone, H. A. Dynamics of Drop Deformation and Breakup in Viscous Fluids. Annu Rev Fluid Mech 26, 65-102, doi:DOI 10.1146/annurev.fluid.26.1.65 (1994). 27 Tice, J. D., Lyon, A. D. & Ismagilov, R. F. Effects of viscosity on droplet formation and mixing in microfluidic channels. Anal Chim Acta 507, 73-77, doi:10.1016/j.aca.2003.11.024 (2004). 28 John M. Hoffman, J. S., Chia-Hsien Hsu and Albert Folch. Elastomeric Molds with Tunable Microtopography. Advanced Materials 16, 2201-2206, doi:10.1002/adma.200400441 (2004). 29 Stone, H. A., Stroock, A. D. & Ajdari, A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36, 381-411, doi:10.1146/annurev.fluid.36.050802.122124 (2004). 30 Zheng, B., Tice, J. D. & Ismagilov, R. F. Formation of droplets of in microfluidic channels alternating composition and applications to indexing of concentrations in droplet-based assays. Anal Chem 76, 4977-4982, doi:10.1021/ac0495743 (2004). 31 Chen, C. T. & Lee, G. B. Formation of microdroplets in liquids utilizing active pneumatic choppers on a microfluidic chip. J Microelectromech S 15, 1492-1498, doi:10.1109/Jmems.2006.883572 (2006). 32 Shui, L. L., Mugele, F., van den Berg, A. & Eijkel, J. C. T. Geometry-controlled droplet generation in head-on microfluidic devices. Appl Phys Lett 93, doi:Artn 153113 10.1063/1.3000624 (2008). 33 Chen, Y. C., Lou, X., Zhang, Z. X., Ingram, P. & Yoon, E. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures. Sci Rep-Uk 5, doi:ARTN 12175 10.1038/srep12175 (2015). 34 Knight, J. B., Vishwanath, A., Brody, J. P. & Austin, R. H. Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds. Phys Rev Lett 80, 3863-3866, doi:DOI 10.1103/PhysRevLett.80.3863 (1998). 35 Abate, A. R. et al. Impact of inlet channel geometry on microfluidic drop formation. Phys Rev E 80, doi:ARTN 026310 10.1103/PhysRevE.80.026310 (2009). 36 Stan, C. A., Tang, S. K. Y. & Whitesides, G. M. Independent Control of Drop Size and Velocity in Microfluidic Flow-Focusing Generators Using Variable Temperature and Flow Rate. Anal Chem 81, 2399-2402, doi:10.1021/ac8026542 (2009). 37 Sugiura, S., Nakajima, M., Iwamoto, S. & Seki, M. Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17, 5562-5566, doi:10.1021/la010342y (2001). 38 Tilghman, R. W. et al. Matrix Rigidity Regulates Cancer Cell Growth by Modulating Cellular Metabolism and Protein Synthesis. Plos One 7, doi:ARTN e37231 10.1371/journal.pone.0037231 (2012). 39 Theberge, A. B. et al. Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology. Angew Chem Int Edit 49, 5846-5868, doi:10.1002/anie.200906653 (2010). 40 Zec, H., Rane, T. D. & Wang, T. H. Microfluidic platform for on-demand generation of spatially indexed combinatorial droplets. Lab on a Chip 12, 3055-3062, doi:10.1039/c2lc40399d (2012). 41 Eaton, W. P., Bitsie, F., Smith, J. H. & Plummer, D. W. A new analytical solution for diaphragm deflection and its application to a surface-micromachined pressure sensor. 1999 International Conference on Modeling and Simulation of Microsystems, 640-643 (1999). 42 Tangen, U., Sharma, A., Wagler, P. & McCaskill, J. S. On demand nanoliter-scale microfluidic droplet generation, injection, and mixing using a passive microfluidic device. Biomicrofluidics 9, doi:Artn 014119 10.1063/1.4907895 (2015). 43 Jahn, A. et al. Preparation of nanoparticles by continuous-flow microfluidics. J Nanopart Res 10, 925-934, doi:10.1007/s11051-007-9340-5 (2008). 44 Barbier, V., Willaime, H., Tabeling, P. & Jousse, F. Producing droplets in parallel microfluidic systems. Phys Rev E 74, doi:ARTN 046306 10.1103/PhysRevE.74.046306 (2006). 45 De Menech, M., Garstecki, P., Jousse, F. & Stone, H. A. Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595, 141-161, doi:10.1017/S002211200700910x (2008). 46 Serizawa, A., Feng, Z. P. & Kawara, Z. Two-phase flow in microchannels. Exp Therm Fluid Sci 26, 703-714, doi:Pii S0894-1777(02)00175-9 Doi 10.1016/S0894-1777(02)00175-9 (2002).
|