帳號:guest(3.149.26.47)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林冠甫
作者(外文):Lin, Guan Fu
論文名稱(中文):微井中利用PDMS薄膜變形形成液珠應用於細胞分泌之檢測
論文名稱(外文):Forming droplets through microwells by PDMS membrane deflection for cell secretion detection
指導教授(中文):陳致真
指導教授(外文):Chen, Chih Chen
口試委員(中文):薛康琳
許佳賢
口試委員(外文):Hsueh, Kan Lin
Hsu, Chia Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:102035520
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:62
中文關鍵詞:微流體聚二甲基矽氧烷薄膜液珠
外文關鍵詞:MicrofluidicPolydimethylsiloxaneMembraneDroplet
相關次數:
  • 推薦推薦:0
  • 點閱點閱:114
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
本研究主要著重於結合生物及工程領域,期盼利用微流體系統創造非化學作用之裝置,使細胞得於人體外長時間存活。目前微流體系統於生物微奈米科技所遇到之困難為無法結合單一細胞培養,以及取出微量培養液進行後端濃度及分泌物之分析;然而本研究突破此困難,利用不同厚度之聚二甲基矽氧烷(PDMS)薄膜及兩層微井、流道之組成,將細胞固定於特定位置,進行長時間個別培養,並定時取出微量培養液(液珠形成)再行置換,分析細胞之分泌物。此外,非貼附型之人類單核白血球細胞(HL-CZ)以及貼附型之乳癌細胞(MDA-MB-231)為此研究之標靶物,期盼藉由新穎之裝置得以了解兩株細胞之個別表現。研究結果發現培養液是否每天進行不同長度時間之置換對細胞有重大之影響,每天長時間置換培養液將減低細胞之存活率,然而特定時間之置換將拉長細胞之生存天數。有趣的是,由於乳癌細胞對於不同厚度之材料有著敏感之特性,因此研究測試兩種不同厚度之材料,觀察其生長之狀況。研究發現乳癌細胞於較厚之材料較易生存,然而較薄之材料將降低其存活率。此兩株細胞之研究不僅僅可以幫助病患減低測試體內癌症治療之痛苦,也得以幫助了解細胞分泌物對於人體之影響。因此研究對於社會之貢獻為可以提前治療癌症疾病以及傳染病,控制其生存情況並了解分泌物對於人體之嚴重情況,解決多年來於微奈米生物科技所遇到之困難。
Screening cells is often the first step in multitude of in vitro assays modernly used in drug testing and in molecular and cell biology. However, the screening algorithm is often based on detecting the fluorescence intensity, limiting the type of assays conducted on cells. Here, we have developed a microfluidic platform integrating droplet-generation and cell-culture systems for screening cells based on long-lasting and transient responses.
This fully automatic microfluidic device is capable of 1) trapping small cell populations in an array of predetermined locations, 2) inspecting cells in a microscope for long periods of time, and 3) selectively retrieving samples of supernatant fluids in droplets from different cell colonies in individual traps for measurements of metabolites and autocrine/paracrine signaling molecules. Local altering microtopography of transparent elastomeric substrate at addressable locations were used to trap and release small fluid volumes (droplets) and cells.
Immiscible solution was introduced to main channel isolating each cell culture microwell. Droplets of various sizes could be generated by precise control of flow rates in immiscible solution and deflection of elastomeric substrate.
Non-adherent HL-CZ and adherent MDA-MB-231 cell lines were cultured in the device. Results suggested that both cell types could be cultured in isolated microwells for seven days without exchanging cell culture medium; however, exchanging cell culture medium every day for longer times reduced the survival rate.
What’s more, MDA-MB-231 cells appeared sensitive to thickness of the elastomeric substrates. Survival rate of MDA-MB-231 cells was much higher when cultured on elastomeric substrates with 60 micrometer thickness in contrast to 30 micrometer.
In summary, we have developed a microfluidic platform capable of long-term cell culturing and sampling cell culture medium over time, and have a great promise to yield new insights into cell behavior and development.
Abstract...........................................i
Content..........................................iii
List of Figures....................................v
List of Tables..................................viii
Chapter 1 Introduction.............................1
1-1 Preface.....................................1
1-2 Background and Value........................3
1-3 Motivation and Future Prospect..............4
Chapter 2 Literature Review........................5
2-1 T-Channel...................................5
2-2 Controllable Moving-Wall Structure..........7
2-3 Cross-Channel...............................8
2-4 Hanging Drop................................9
2-5 Acoustic Waves.............................12
2-6 Summary....................................14
Chapter 3 Materials and Methods...................15
3-1 Design Concept.............................15
3-2 Soft Lithography...........................16
3-2-1 Pretreatment...........................17
3-2-2 Spin Coat..............................17
3-2-3 Soft Bake..............................17
3-2-4 Exposing...............................17
3-2-5 Post Expose Bake (PEB).................18
3-2-6 Develop................................18
3-2-7 Rinse..................................18
3-2-8 Hard Bake..............................18
3-3 PDMS Bonding...............................19
3-4 Clamp Molding..............................20
3-5 Other structures for PDMS bonding..........22
3-6 Experimental Setups........................24
Chapter 4 Results.................................25
4-1 Membrane formation.........................25
4-2 Membrane Deflection........................27
4-3 Droplet Generation.........................31
4-4 Cell culture medium Replenishment..........34
4-5 Cell Viability.............................36
4-5-1 Introduction to HL-CZ and MDA-MB-231 cell line ..................................................36
4-5-2 Cell Viability: HL-CZ cell..................38
4-5-3 Cell Viability: MDA-MB-231 cell.............44
4-6 Further Discussion.........................53
Chapter 5 Conclusion..............................58
References........................................59
1 Stewart, B. W. W., C.P. World Cancer Report, International Agency for Research on Cancer. (2014).
2 Jensen, K. F. Microreaction engineering - is small better? Chem Eng Sci 56, 293-303, doi:Doi 10.1016/S0009-2509(00)00230-X (2001).
3 Nachtigall, S., Zedel, D. & Kraume, M. Analysis of drop deformation dynamics in turbulent flow. Chinese J Chem Eng 24, 264-277, doi:10.1016/j.cjche.2015.06.003 (2016).
4 Garstecki, P., Fuerstman, M. J., Stone, H. A. & Whitesides, G. M. Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up. Lab on a Chip 6, 437-446, doi:10.1039/b510841a (2006).
5 Gupta, A., Murshed, S. M. S. & Kumar, R. Droplet formation and stability of flows in a microfluidic T-junction. Appl Phys Lett 94, doi:Artn 164107 10.1063/1.3116089 (2009).
6 Wu, L., Li, G. P., Xu, W. & Bachman, M. Droplet formation in microchannels under static conditions. Appl Phys Lett 89, doi:Artn 144106 10.1063/1.2358857 (2006).
7 Lin, Y. H., Lee, C. H. & Lee, G. B. Droplet formation utilizing controllable moving-wall structures for double-emulsion applications. J Microelectromech S 17, 573-581, doi:10.1109/Jmems.2008.924273 (2008).
8 Lin, Y. H., Lee, C. H. & Lee, G. B. A new droplet formation chip utilizing controllable moving-wall structures for double emulsion applications. Proc Ieee Micr Elect, 22-25 (2008).
9 Zeng, S., Li, B., Su, X., Qin, J. & Lin, B. Microvalve-actuated precise control of individual droplets in microfluidic devices. Lab Chip 9, 1340-1343, doi:10.1039/b821803j (2009).
10 Tung, Y. C. et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136, 473-478, doi:10.1039/c0an00609b (2011).
11 Pan, J., Stephenson, A. & Abell, C. Quantitative tracking of the growth of individual algal cells in microdroplet compartments. Abstr Pap Am Chem S 241 (2011).
12 Gu, H., Duits, M. H. & Mugele, F. Droplets formation and merging in two-phase flow microfluidics. Int J Mol Sci 12, 2572-2597, doi:10.3390/ijms12042572 (2011).


13 Collins, D. J., Alan, T., Helmerson, K. & Neild, A. Surface acoustic waves for on-demand production of picoliter droplets and particle encapsulation. Lab on a Chip 13, 3225-3231, doi:10.1039/c3lc50372k (2013).
14 Negative Tone Photoresist Formulations 50-100. MICROCHEM.
15 Thangawng, A. L., Ruoff, R. S., Swartz, M. A. & Glucksberg, M. R. An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization. Biomed Microdevices 9, 587-595, doi:10.1007/s10544-007-9070-6 (2007).
16 Adeyiga O, K. S., Paiè P, Di Carlo D. Research highlights: surface-based microfluidic control. Lab on a Chip 15, doi:10.1039/c5lc90071a (2015).
17 Schomburg, W. K. Introduction to microsystem design. (Springer, 2011).
18 D. Dilip, M. S. B., Raghuraman N. Govardhan. Effect of absolute pressure on flow through a textured hydrophobic microchannel. Microfluidics and Nanofluidics 19, 1409-1427, doi:10.1007/s10404-015-1655-4 (2015).
19 Hung, L. H. et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab on a Chip 6, 174-178, doi:10.1039/b513908b (2006).
20 Ward, T., Faivre, M., Abkarian, M. & Stone, H. A. Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis 26, 3716-3724, doi:10.1002/elps.200500173 (2005).
21 Liu, W. T. et al. Propagation of SARS coronavirus with human promonocyte cell line, HL-CZ. J Clin Virol 28, S91-S91 (2003).
22 Hilal, T. & Romond, E. H. ERBB2 (HER2) Testing in Breast Cancer. Jama-J Am Med Assoc 315, 1280-1281 (2016).
23 Tangen, U. et al. DNA-library assembly programmed by on-demand nano-liter droplets from a custom microfluidic chip. Biomicrofluidics 9, doi:Artn 044103 10.1063/1.4926616 (2015).
24 Nisisako, T., Torii, T. & Higuchi, T. Droplet formation in a microchannel network. Lab on a Chip 2, 24-26, doi:10.1039/b108740c (2002).
25 Patra, B., Peng, C. C., Liao, W. H., Lee, C. H. & Tung, Y. C. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Sci Rep-Uk 6, doi:ARTN 21061 10.1038/srep21061 (2016).
26 Stone, H. A. Dynamics of Drop Deformation and Breakup in Viscous Fluids. Annu Rev Fluid Mech 26, 65-102, doi:DOI 10.1146/annurev.fluid.26.1.65 (1994).
27 Tice, J. D., Lyon, A. D. & Ismagilov, R. F. Effects of viscosity on droplet formation and mixing in microfluidic channels. Anal Chim Acta 507, 73-77, doi:10.1016/j.aca.2003.11.024 (2004).
28 John M. Hoffman, J. S., Chia-Hsien Hsu and Albert Folch. Elastomeric Molds with Tunable Microtopography. Advanced Materials 16, 2201-2206, doi:10.1002/adma.200400441 (2004).
29 Stone, H. A., Stroock, A. D. & Ajdari, A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36, 381-411, doi:10.1146/annurev.fluid.36.050802.122124 (2004).
30 Zheng, B., Tice, J. D. & Ismagilov, R. F. Formation of droplets of in microfluidic channels alternating composition and applications to indexing of concentrations in droplet-based assays. Anal Chem 76, 4977-4982, doi:10.1021/ac0495743 (2004).
31 Chen, C. T. & Lee, G. B. Formation of microdroplets in liquids utilizing active pneumatic choppers on a microfluidic chip. J Microelectromech S 15, 1492-1498, doi:10.1109/Jmems.2006.883572 (2006).
32 Shui, L. L., Mugele, F., van den Berg, A. & Eijkel, J. C. T. Geometry-controlled droplet generation in head-on microfluidic devices. Appl Phys Lett 93, doi:Artn 153113 10.1063/1.3000624 (2008).
33 Chen, Y. C., Lou, X., Zhang, Z. X., Ingram, P. & Yoon, E. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures. Sci Rep-Uk 5, doi:ARTN 12175 10.1038/srep12175 (2015).
34 Knight, J. B., Vishwanath, A., Brody, J. P. & Austin, R. H. Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds. Phys Rev Lett 80, 3863-3866, doi:DOI 10.1103/PhysRevLett.80.3863 (1998).
35 Abate, A. R. et al. Impact of inlet channel geometry on microfluidic drop formation. Phys Rev E 80, doi:ARTN 026310 10.1103/PhysRevE.80.026310 (2009).
36 Stan, C. A., Tang, S. K. Y. & Whitesides, G. M. Independent Control of Drop Size and Velocity in Microfluidic Flow-Focusing Generators Using Variable Temperature and Flow Rate. Anal Chem 81, 2399-2402, doi:10.1021/ac8026542 (2009).
37 Sugiura, S., Nakajima, M., Iwamoto, S. & Seki, M. Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17, 5562-5566, doi:10.1021/la010342y (2001).
38 Tilghman, R. W. et al. Matrix Rigidity Regulates Cancer Cell Growth by Modulating Cellular Metabolism and Protein Synthesis. Plos One 7, doi:ARTN e37231 10.1371/journal.pone.0037231 (2012).
39 Theberge, A. B. et al. Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology. Angew Chem Int Edit 49, 5846-5868, doi:10.1002/anie.200906653 (2010).
40 Zec, H., Rane, T. D. & Wang, T. H. Microfluidic platform for on-demand generation of spatially indexed combinatorial droplets. Lab on a Chip 12, 3055-3062, doi:10.1039/c2lc40399d (2012).
41 Eaton, W. P., Bitsie, F., Smith, J. H. & Plummer, D. W. A new analytical solution for diaphragm deflection and its application to a surface-micromachined pressure sensor. 1999 International Conference on Modeling and Simulation of Microsystems, 640-643 (1999).
42 Tangen, U., Sharma, A., Wagler, P. & McCaskill, J. S. On demand nanoliter-scale microfluidic droplet generation, injection, and mixing using a passive microfluidic device. Biomicrofluidics 9, doi:Artn 014119 10.1063/1.4907895 (2015).
43 Jahn, A. et al. Preparation of nanoparticles by continuous-flow microfluidics. J Nanopart Res 10, 925-934, doi:10.1007/s11051-007-9340-5 (2008).
44 Barbier, V., Willaime, H., Tabeling, P. & Jousse, F. Producing droplets in parallel microfluidic systems. Phys Rev E 74, doi:ARTN 046306 10.1103/PhysRevE.74.046306 (2006).
45 De Menech, M., Garstecki, P., Jousse, F. & Stone, H. A. Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595, 141-161, doi:10.1017/S002211200700910x (2008).
46 Serizawa, A., Feng, Z. P. & Kawara, Z. Two-phase flow in microchannels. Exp Therm Fluid Sci 26, 703-714, doi:Pii S0894-1777(02)00175-9 Doi 10.1016/S0894-1777(02)00175-9 (2002).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *