帳號:guest(3.145.199.112)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林勁言
作者(外文):Lin, Chin Yen
論文名稱(中文):有機發光二極體畫素之噴印平整度改善
論文名稱(外文):Layer Flatness Improvement by Inkjet-Printed OLED Pixel
指導教授(中文):羅丞曜
指導教授(外文):Lo, Cheng Yao
口試委員(中文):陳榮順
陳政寰
口試委員(外文):Chen, Rong Shun
Chen, Cheng Huan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:102035516
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:85
中文關鍵詞:二次填墨凹口狀有機發光二極體咖啡環效應噴印製程
外文關鍵詞:Second PrintingRecess VolumeOLEDCoffee Ring EffectInkjet Printing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:329
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文提出一種以第二次噴印改善第一次噴印OLED材料平整度不均問題的方法。此方法以可精確定位的噴印技術將所需材料填補於因咖啡環效應產生之第一次噴印材料凹口內,以期改善電流及發光之分布均勻性。
本研究以積分精算第一次噴印材料之凹口體積,並配合順序、方向、重疊比例及分割區域之優化,達成將此凹口體積縮減73%的成果。本研究除提出以凹口左右兩側為基準之乾膜平整度標準差作為改善之量化驗證外,亦證明以此第二次噴印方法所造成之整體穿透率下降及電阻率上升分別不超過1.5%及15%,暗示了不需以特殊設備、材料及製程步驟改變OLED畫素之親疏水性即可改善乾膜平整度。
This research proposed a method that compensates the recess of the first OLED layer resulted from wet process by a second inkjet printing. The inkjet printing filled the material to the recess resulted in the first layer because of the coffee ring effects with precise positioning, in order to improve the current distribution and light emitting uniformity.
This research obtained the recess of the first layer by integration and reduced 73% recess volume with sequence, direction, overlap ratio, and segment amount optimizations. This research not only provided a methodology that evaluates the dry-film uniformity by standard deviation between the two peaks of the recess quantitatively, but also proved that the transmittance and the resistivity resulted from this method reduced and increased less than 1.5% and 15%, respectively. These result implied that the dry-film uniformity can be improved without extra facilities, material, and processes for the hydrophilicity and hydrophobicity of OLED.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 IX
表目錄 XIII
符號表 XIV
第1章 緒論 1
1.1前言 1
1.1.1有機發光二極體運作結構與原理 2
1.1.2有機發光二極體製程 4
1.1.3噴墨印刷技術簡介 7
1.2研究動機 9
1.3文獻回顧 11
1.3.1 以噴印製程製作OLED 11
1.3.2 液膜形狀探討 15
1.3.3改善薄膜均勻性之不同方法 16
1.3.3.1表面改質 16
1.3.3.2材料及溶劑改善 18
1.3.3.3製程參數控制 21
1.3.4 文獻總結 23
1.4本文內容 23
第2章 理論基礎與實驗設計 25
2.1接觸角與表面能 25
2.2咖啡環效應 27
2.3畫素結構與材料選擇 28
2.3.1 結構與材料之定義 28
2.3.2墨水適性分析 30
2.4結構尺寸及薄膜厚度 31
2.4.1 實驗基板尺寸 31
2.4.2 薄膜厚度 32
2.5 液膜形狀分析 33
2.6 凹口體積填充計算 34
2.7 噴印畫布設計 38
2.7.1 畫布分割選擇 38
2.7.2畫布分割塊數 38
2.7.3畫布交疊分析 39
2.7.4噴印方向 39
2.7.5畫布噴印順序 40
2.7.6畫布尺寸 41
2.8噴印平整度判斷機制 43
2.8.1線段平整性判斷方法—標準差 44
2.8.2填充量判斷方法—距離標準差 44
2.8.3單一樣品之變異程度 46
2.8.4加權比例選擇 46
第3章 實驗設備與製程 48
3.1實驗系統與設備 48
3.1.1 噴墨印刷系統 48
3.1.2表面輪廓儀 49
3.1.3四點探針系統 50
3.1.4 紫外光/可見光 光譜儀系統 50
3.1.5 白光干涉儀 51
3.2實驗參數 52
3.2.1 噴印波形圖與壓電頻率 52
3.2.2 墨水驅動電壓 54
3.2.3液滴間距之分析 55
3.3實驗製程 57
3.3.1 實驗基板製備 57
3.3.1.1 ITO層製作 57
3.3.1.2 黑色矩陣層製作 57
3.3.2 噴印實驗製程 59
第4章 實驗結果與討論 61
4.1一次噴印製程填墨結果 61
4.2二次噴印畫布設計實驗結果驗證 62
4.2.1分割選擇 62
4.2.2畫布交疊選擇 63
4.2.3噴印方向選擇 63
4.2.4噴印順序選擇 65
4.3最佳參數二次噴印結果 66
4.3.1畫布尺寸比較 66
4.3.2最佳化參數 68
4.3.3 三維立體圖 69
4.4穿透率測試 70
4.5導電度測試 72
第5章 結論與未來工作 75
5.1結論 75
5.2未來工作 76
參考文獻 78
附錄 有機發光二極體發光均勻性驗證 83
發表清單 85
[1] M. Pope, H. P. Kallmann, P. Magnante, Electroluminescence in Organic Crystal, J. Chem. Phys, 38, 2042, (1963)
[2] C. W. Tang, S. A. VanSlyke, Organic electroluminescent diodes, Applied Physics Letters 51, 913-915, (1987)
[3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks,K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Light-emitting diodes based on conjugated polymers,Nature,347 ,539, (1990)
[4] C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Organic Electroluminescent Device with a Three-Layer Structure, jpn. J. Appl. phys. 27,713, (1988)
[5] C. Adachi, T. Tsutsui, S. Saito, Organic electroluminescent device having a hole conductor as an emitting layer, Appl. Phys. Lett. , 55, 1489, (1989)
[6] M. A. Baldo, D. F. O’Brien, M. E. Thompson, S. R. Forrest, Excitonic singlet-triplet ratio in a semiconducting organic thin film, Phys. Rev. B 60, 14422, (1999)
[7] M. A. Baldo, M. E. Thompson, S. R. Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer, Nature 403, 750-753, (2000)
[8] K. K. B. Hon, L. Li, I. M. Hutchings, Direct writing technology-Advances and developments, CRIP Annals – Manufacturing Technology 57, 601-620, (2008)
[9] C. Zhong, C. Duan, F. Huang, H. Wu, Y. Cao, Material and devices toward fully solution processable organic light-emitting diodes, Chem. Mater. 23, 326, (2011)
[10] L. Duan, L. Hou, T.W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wang, Y. Qiu, Solution processable small molecules for organic light-emitting diodes, J. Mater. Chem. 20, 6392, (2010)
[11] Y. F. Chang, Y. C. Chiu, H. C. Yeh, H. W. Chen, H. F. Meng, H. W. Lin, H. L. Huang, T. C. Chao, M. R. Tseng, H. W. Zan, S. F Horng, Unmodified small-molecule organic light-emitting diodes by blade coating, Org. Electron. 13, 2149, (2013)
[12] K. H. Shin, J. Cho, J. Jang, H. S. Jang, E. S. Park, K. Song, S. H. Kim, Polypyrrole top-contact electrodes patterned by inkjet printing assisted vapor deposition polymerization in flexible organic thin-film transistors, Organic Electronics, 13, 715–720, (2012)
[13] J. W. Song, J. Kim, Y. H. Yoon, B. S. Choi, J. H. Kim, C. S. Han, Inkjet printing of single-walled carbon nanotubes and electrical characterization of the line pattern, Nanotechnology 19,095702, (2008)
[14] Y. Tsuchiya, S. Haraguchi, M. Ogawa, T. Shiraki, H. Kakimoto, O. Gotou, T. Yamada, K. Okumoto, S. Nakatani, K. Sakanoue, S. Shinkai, Fine Wettability Control Created by a Photochemical Combination Method for Inkjet Printing on Self-Assembled Monolayers, Advanced MaterialsVolume 24, Issue 7, (2012)
[15] F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G. W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, A. C. Ferrari, Inkjet-Printed Graphene Electronics, ACS Nano, 6, 2992, (2012)
[16] M. C. Gather, A. Köhnen, A. Falcou, H. Becker, K. Meerholz, Solution-Processed Full-Color Polymer Organic Light-Emitting Diode Display Fabricated by Direct Photolithography, Advanced Functional MaterialsVolume 17, Issue 2, (2007)
[17] C. H. Chang, H. C. Cheng, Y. J. Lu, K. C. Tien, H. W. Lin, C. L. Lin, C. J. Yang, C. C. Wu, Enhancing color gamut of white OLED displays by using microcavity green pixels, Organic Electronics 11, 247–254, (2010)
[18] T. Shimoda, K. Morii, S. Seki, H. Kiguchi, Inkjet Printing of Light-Emitting Polymer Displays, MRS BULLETIN, Volume 28, Issue 11, 821-827, (2003)
[19] R. Chesterfield, A. Johnson, C. Lang, M. Stainer, J. Ziebarth, Solution-Coating Technology for AMOLED Displays, Information Display frontline technology
[20] T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, J. C. Sturm, Ink-jet printing of doped polymers for organic light emitting devices, APPLIED PHYSICS LETTERS VOLUME 72, NUMBER 5 2 , (1998)
[21] C. F. Madigan, T. R. Hebner, J. C. Sturm, Lateral Dye Distribution with Ink-Jet Dye Doping of Polymer Organic Light Emitting Diodes, Paper V.3.5, Proc. Symp. Mat. Res. Soc. vol.624
[22] Z. Ding, R. Xing , Q. Fu, D. Ma, Y. Han, Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing, Organic Electronics 12, 703–709,(2011)
[23] H. Gorter, M.W.L. Slaats, M. Ren, W. Lu, C.J. Kuijpers, W.A. Groen, Toward inkjet printing of small molecule organic light emitting diodes, Thin Solid Films 532, 11–15, (2013)
[24] C. T. Chen, F. G. Tseng, C. C. Chieng , Evaporation evolution of volatile liquid droplets in nanoliter wells, Sensors and Actuators A 130–131, 12–19, (2006)
[25] C. T. Chen, C. C. Chieng, F. G. Tseng, Uniform Solute Deposition of Evaporable Droplet in Nanoliter Wells, J. MEMS, VOL. 16, NO. 5, (2007)
[26] F. Villani, P. Vacca, G. Nenna, O. Valentino, G. Burrasca, T. Fasolino, C. Minarini, D. Sala, Inkjet Printed Polymer Layer on Flexible Substrate for OLED Applications, J. Phys. Chem., 113, 13398–13402, (2009)
[27] F. Ely, C.O. Avellaneda, P. Paredez, V.C. Nogueira, T.E.A. Santos, V.P. Mammana, C. Molina, J. Brug, G. Gibson, L. Zhao, Patterning quality control of inkjet printed PEDOT:PSS films by wetting Properties, Synthetic Metals 161, 2129– 2134, (2011)
[28] M. J. J. Coenen, T. M. W. L. Slaats, T. M. Eggenhuisen, P. Groen, Inkjet printing the three organic functional layers of two-colored organic light emitting diodes, Thin Solid Films 583, (2015)
[29] J. Rhee, J. Wang, S. Cha, J. Chung, D. Lee, S. Hong, B. Choi, J. Goh, K. Jung, S. Kim, C. Ko, B. Koh, S. Sung, K. Park, N. Kim, K. Chung, H. Gregory, M. Bale, C. Creighton, B. Wild, A. Shawcross, L. Webb, M. Hatcher, R. Lees, M. Richardson, O. Bassett, S. Coats, J. Jongman, S. Goddard, P. Lyon, C. Murphy, P. Wallace, J. Carter, N. Athanassopoulou, A 14.1-in. Full-Color Polymer-LED Display with a-Si TFT Backplane by Ink-Jet Printing, SID Symposium Digest of Technical Papers, Volume 37, Issue 1, pages 895–897, (2006)
[30] J. X. Zhou, J. Y. H. Fuh, H. T. Loh, Y. S. Wong, Y. S. Ng, J. J. Gray, S. J. Chua, Characterization of drop-on-demand microdroplet printing, Int J Adv Manuf Technol, 48:243–250, (2010)
[31] P. Wilson, C. Lekakou, J. F. Watts, System Design and Process Optimization for the Inkjet Printing of PEDOT:Poly(styrenesulfonate), J. Micro Nano Manuf. 2, 011004-9, (2014)
[32] T. Young, An essay on the cohesion of fluids, Philosophical Transactions of the Royal Society of London, 95 : 65–87, (1805)
[33] R.D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops”, Nature 389, (1997).
[34] R.D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E 62, (2000).
[35] X. Shen, C. M. Ho, T. S. Wong, “Minimal Size of Coffee Ring Structure,” J. Phys. Chem. B, 114, (2010)
[36] P. J. Yunker, T. Still, M. A. Lohr, A. G. Yodh, “Suppression of the coffee-ring effect by shape-dependent capillary interactions”, Nature 476, (2011)
[37] D. Soltman, V. Subramanian, “Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect,” Langmuir 24,(2008)
[38] R. Bhardwaj, X. Fang, P. Somasundaran, D. Attinger, Self-Assembly of Colloidal Particles from Evaporating Droplets: Role of DLVO Interactions and Proposition of a Phase Diagram, Langmuir 26, (2010)
[39] J. Yang, J. Shen, Doping effects in organic electroluminescent devices, J. Appl. Phys. 84, 2105, (1998)
[40] Z. Liu, J. Pinto, J. Soares, E. Pereira, Efficient multilayer organic light emitting diode, synth. Metals, 122, 177, (2010)
[41] Y. Sato, S. Ichinosawa, H. Kanai, Operation characteristics and degradation of organic electroluminescent devices, IEEE Journal of Selected Topics in Quantum Electronics, 4, 40, (1998)
[42] K. A. Higginson, X. Zhang, F. Papadimitrakopoulos, Thermal and Morphological Effects on the Hydrolytic Stability of Aluminum Tris(8-hydroxyquinoline) (Alq3), Chem. Mater. 10, 1017, (1998)
[43] S. A. Van Slyke, C. H. Chen, C. W. Tang, Organic electroluminescent devices with improved stability, Appl. Phys. Lett. 69, 2160, (1996)
[44] P. Wilson, C. Lekakou, J. F. Watts, A Comparative Assessment of Surface Microstructure and Electrical Conductivity Dependence on Co-Solvent Addition in Spin Coated and Inkjet Printed Poly(3,4-Ethylenedioxythiophene):-Polystyrene Sulphonate (PEDOT:PSS), Org. Electron., 13(3), pp. 409–418, (2012)
[45] Nuno Reis, Chris Ainsley, Brain Derby, Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors, Journal of Applied Physics 97 (2005) 094903-6
[46] H. Mu, W. Li, R. Jones, A. Steckl, D. Klotzkin, A comparative study of electrode effects on the electrical and luminescent characteristics of Alq3/TPD OLED: Improvements due to conductive polymer (PEDOT) anode, Journal of Luminescence 126, 225–229, (2007)
[47] C. Chen, C. Chuang, Microdroplets of red photoresist inkjet printed onto commercial black matrix glasses, Micro & Nano Letters, Vol. 7, Iss. 8, pp. 733–735, (2012)

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *