帳號:guest(18.191.238.216)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張至晧
作者(外文):Chang, Chih Hao
論文名稱(中文):光熱偏折系統結合循環伏安儀於生物薄膜之分析
論文名稱(外文):Combination of Photothermal Deflection System and Cyclic Voltammetry for Biomolecular Thin Films Analysis
指導教授(中文):賴梅鳳
衛榮漢
指導教授(外文):Lai, Mei Feng
Wei, Zung Hang
口試委員(中文):劉達人
劉博滔
口試委員(外文):Liu, Da Ren
Liu, Bo Tau
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:102035512
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:49
中文關鍵詞:光熱偏折循環伏安法發熱功率
外文關鍵詞:Photothermal beam deflectioncyclic voltammetrythermal energy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:206
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
光熱偏折系統原理為量測雷射光行經易因溫度變化導致折射率改變之介質時所造成之光偏移量。因其所具有的非破壞性、非接觸性以及高敏感性等優點,因此經常被使用於量測眾多材料的光學特性以及熱學特性。
而在本論文中,透過直接施加電流於金屬達到產熱效果,以純金膜的光熱偏折訊號為校正線,成功地將量測到的光熱偏折訊號換算成發熱功率值;實驗上進行樣品製備所利用之分子薄膜為單層膜自組裝分子(Self -Assembled Monolayer,SAM),此分子會自發性地整齊排列鍵結於金膜表面,若進一步將循環伏安法中量測得到的工作電極面積之數值做比較與分析,證實金膜上確實有形成厚度數奈米的分子薄膜,且薄膜的緻密度隨時間而增加,將工作電極面積的數據與光熱偏折量測得到的發熱功率數據互相比較,可以發現兩者呈正相關。光熱偏折系統可量測分子薄膜對於金膜產生之極微小熱能的變化。
Photothermal beam deflection (PBD) system is based on detecting the displacement of a laser beam caused by change of the refractive index that varied with local temperature. PBD system is non-destructive, non-contacting and highly-sensitive to sample, which make it a fantastic way to analyze the thermal properties of materials.
In this thesis, by adjusting the electric currents passing through gold thin films, different amount of thermal power can be generated to influence the photothermal signals; subsequently, the signal from photodetectors can be calibrated for accurate thermal energy measurement. Self-assembled monolayers (SAM) are applied for modifying the surface of gold thin film via the spontaneous formation of gold–thiolate bonds. The increase of the density of SAMs covering gold surface with incubation time can be confirmed by the decreasing of surface area measured by cyclic voltammetry (CV). Comparing the thermal power analyzed by PBD with the measured surface area from CV, positive correlation has been found. In this thesis, the PBD system has been proved to be highly-sensitive for measuring the changes of thermal energy across nanometer-scale interfaces.
摘要 I
Abstract II
目錄 III
圖表目錄 VI
表目錄 IX
1.1前言 1
1.2 研究動機與目的 1
第二章、理論基礎與文獻回顧 3
2.1 光熱偏折量測法 3
2.1-1 光熱偏折簡介 3
2.1-2 探測雷射光偏折之路徑 6
2.1-3 樣品表面溫度分析 8
2.1-4 量測分析 11
2.2 循環伏安法 12
2.2-1 循環伏安法(cyclic voltammetry;CV)簡介 12
2.2-2 循環伏安法裝置介紹 12
2.2-3 工作電極之工作面積(Working Area)計算 14
2.3自組裝單層薄膜分子 15
2.3-1 自組裝 16
2.3-2 單層薄膜自組裝分子 17
2.4 文獻回顧 20
第三章、研究方法 24
3.1 實驗設計 24
3.2 系統架設 26
3.2-1 量測系統架設 26
3.3 化學藥品 27
3.4 樣品製作流程與實驗流程 28
3.4-1樣品製作流程 28
3.4-2實驗流程 29
第四章、結果與討論 32
4.1 金膜表面上修飾單層薄膜分子 34
4.1-1以循環伏安法確認金膜上形成單層薄膜分子結構 34
4.1-2 羧基(-COOH)單層薄膜分子 35
4.1-3 生物素(Biotin-)/羥基(-OH)/胺基(-NH2)自組裝薄膜分子 38
4.2金膜表面上修飾多層薄膜分子 40
4.2-1 訊號測試 40
4.2-2 以循環伏安法確認金膜上形成多層薄膜分子結構 41
4.2-3 多層薄膜結構1: Au/MUA/Ab/BSA 42
4.2-4 多層薄膜結構2: Au/Biotin-SAM/Streptavidin 43
第五章、結論與未來工作 45
參考文獻 46
[1] A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: Detection by the “mirage effect”,” Appl. Phys. Lett., vol. 36, pp. 130-132, 1980.
[2] T. Q. Qiu, C. P. Grigoropoulos, and C. L. Tien, “Novel technique for noncontact and microscale temperature measurements,” Exp. Heat Transfer, vol. 6, pp. 231-241, 1993.
[3] W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Optics, vol. 20, pp. 1333-1344, 1981.
[4] J. D. Spear, R. E. Russo, and R. J. Silva, “Collinear photothermal deflection spectroscopy with light-scattering samples,” Appl. Optics, vol. 29, pp. 4225-4234, 1990.
[5] T. Ghrib, N. Yacoubi, and F. Saadallah, “Simultaneous determination of thermal conductivity and diffusivity of solid samples using the “Mirage effect” method,” Sens. Actuators, A, vol. 135, pp. 346-354, 2007.
[6] G. Leahu, R. L. Voti, C. Sibilia, M. Bertolotti, V. Golubev, D. A. Kurdyukov, and S. Kaplan, “Thermal and optical properties of SiO2/GaN opals by photothermal deflection technique,” Opt. Quant. Electron., vol. 39, pp. 305-310, 2007.
[7] F. Saadallah, N. Yacoubi, F. Genty, and C. Alibert, “Photothermal investigations of thermal and optical properties of GaAlAsSb and AlAsSb thin layers,” J. Appl. Phys., vol. 94, pp. 5041-5048, 2003.
[8] M. Heck, “Mirage Effect in Multilayers, Project Report,” Cochin University of Science and Technology.
[9] S. Abroug, F. Saadallah, and N. Yacoubi, “Determination of doping effects on Si and GaAs bulk samples properties by photothermal investigations,” Physica B, vol. 400, pp. 163-167, 2007.
[10] C. B. Reyes, J. Jaarinen, L. D. Favro, P. K. Kuo, R. L. Thomas, and D. S. Kim, “Mirage-effect measurement of thermal diffusivity. Part I: experiment,” Can. J. Phys., vol. 64, pp. 1165-1167, 1986
[11] J. Randles, “A cathode ray polarograph. Part II.—the current-voltage curves,” Trans. Farady. Soc., vol. 44, pp. 327-338, 1948.
[12] P. T. Kissinger and W. R. Heineman, “Cyclic Voltammetry,” J. Chem. Educ., vol. 60, pp. 702-706, 1983.
[13] J. Tsai, I. Bau, H. Chen, Y. Lin, and G. Wang, “A novel nanostructured biosensor for the detection of the dust mite antigen Der p2,” Int J Nanomedicine., vol. 6, pp. 1201-1208, 2011.
[14] W. C. Bigelow, D. L. Pickett, and W. A. Zisman, “Oleophobic monolayers. I. Films adsorbed from solution in non-polar liquids,” J. Colloid Interface Sci., vol. 1, pp. 513–538, 1946.
[15] J. Sagiv, “Organized Monolayers by Adsorption, I. Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces,” J. Am. Chem. Soc., vol. 102, pp. 92–98, 1980.
[16] R. G. Nuzzo and D. L. Allara, “Adsorption of Bifunctional Organic Disulfides on Gold Surfaces,” J. Am. Chem. Soc., vol. 105, pp. 4481-4483, 1983.
[17] T. Schneider, M. J. Politi and M. S. Baptista, “A Smart-Laser-Based Calorimeter,” J. Chem. Educ., vol. 79, pp. 503-505, 2002.
[18] A. Salloum and Y. Atassi, “On calorimetry by optical beam deflection method,” Thermochim Acta, vol. 409, pp. 87–93, 2004
[19] H. Sakashita, A. Tomita, Y. Umeda, H. Natukawa, and H. Kishioka, “Homogeneous Immunoassay Using Photothermal - Beam Deflection Spectroscopy,” Anal. Chem., vol. 67, pp. 1278-1282, 1995
[20] S. Balasubramanian, Alexander Revzin and Aleksandr Simoniana, “Electrochemical Desorption of Proteins from Gold Electrode Surface,” Electroanalysis, vol. 18, pp. 1885-1892, 2006.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *