|
Reference 1. Tiwari, R.P., et al., Designing of novel antigenic peptide cocktail for the detection of antibodies to HIV-1/2 by ELISA. Journal of Immunological Methods, 2013. 387(1–2): p. 157-166. 2. Manocha, M., et al., Comparing modified and plain peptide linked enzyme immunosorbent assay (ELISA) for detection of human immunodeficiency virus type-1 (HIV-1) and type-2 (HIV-2) antibodies. Immunology Letters, 2003. 85(3): p. 275-278. 3. McFall, S.M., et al., A Simple and Rapid DNA Extraction Method from Whole Blood for Highly Sensitive Detection and Quantitation of HIV-1 Proviral DNA by Real-Time PCR. Journal of Virological Methods, (0). 4. Burchard, P.R., et al., A rapid RT-PCR assay for the detection of HIV-1 in human plasma specimens. Experimental and Molecular Pathology, 2014. 97(1): p. 111-115. 5. Chen, K.H., et al., c-erbB-2 sensing using AlGaN/GaN high electron mobility transistors for breast cancer detection. Applied Physics Letters, 2008. 92(19): p. 3. 6. Chu, B.H., et al., Enzyme-based lactic acid detection using AlGaN/GaN high electron mobility transistors with ZnO nanorods grown on the gate region. Applied Physics Letters, 2008. 93(4): p. 3. 7. Huang, C.-C., et al., AlGaN/GaN high electron mobility transistors for protein–peptide binding affinity study. Biosensors and Bioelectronics, 2013. 41(0): p. 717-722. 8. Chen, K.H., et al., Low Hg(II) ion concentration electrical detection with AlGaN/GaN high electron mobility transistors. Sensors and Actuators B: Chemical, 2008. 134(2): p. 386-389. 9. Hung, S.C., et al., Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2008. 92(19): p. 3. 10. Malmsten, A., et al., Improved HIV-1 viral load determination based on reverse transcriptase activity recovered from human plasma. Journal of Medical Virology, 2005. 76(3): p. 291-296. 11. UNAIDS, W.U., Global update on HIV treatment 2013: Results, impact and opportunities, June 2013. p. 126. 12. Jiunn-Shyan Julian Wu, C.-W.H., Hsiu Wu, Shih-Tse Huang, Shih-yan Yang, Preliminary Study of Contact Patterns and Places Among HIV-infected Cases with their Anonymous Sexual Contacts, September 2012 to March 2013, Taipei Region, Taiwan in Taiwan Epidemiology BulletinDecember 24, 2013: Taipei Regional Center, Taiwan Centers for Disease Control, Ministry of Health and Welfare. 13. 王德原, 何.鍾., HIV抗體診斷試劑效能評估調查研究, 2011. p. 288-294. 14. Infectious Disease: Pathogenesis, Prevention and Case Studies. Emerging Infectious Diseases, 2010. 16(1): p. 172-173. 15. Wright, D.W., et al., Global Conformational Dynamics of HIV-1 Reverse Transcriptase Bound to Non-Nucleoside Inhibitors. Biology, 2012. 1(2): p. 222-244. 16. Thévenot, D.R., et al., Electrochemical biosensors: recommended definitions and classification1. Biosensors and Bioelectronics, 2001. 16(1–2): p. 121-131. 17. Lalinský, T., et al., AlGaN/GaN based SAW-HEMT structures for chemical gas sensors. Procedia Engineering, 2010. 5(0): p. 152-155. 18. Abidin, M.S.Z., Shahjahan, and A.M. Hashim, Surface Reaction of Undoped AlGaN/GaN HEMT Based Two Terminal Device in H+ and OH- Ion-contained Aqueous Solution. Sains Malaysiana, 2013. 42(2): p. 197-203. 19. Huang, C.C., et al., AlGaN/GaN high electron mobility transistors for protein-peptide binding affinity study. Biosensors & Bioelectronics, 2013. 41: p. 717-722. 20. Ren, F. and S.J. Pearton, Sensors using AlGaN/GaN based high electron mobility transistor for environmental and bio-applications. Physica Status Solidi C: Current Topics in Solid State Physics, Vol 9, No 2, 2012. 9(2). 21. Yu, X., et al., Wireless hydrogen sensor network using AlGaN/GaN high electron mobility transistor differential diode sensors. Sensors and Actuators B-Chemical, 2008. 135(1): p. 188-194. 22. Steinhoff, G., et al., pH response of GaN surfaces and its application for pH-sensitive field-effect transistors. Applied Physics Letters, 2003. 83(1): p. 177-179. 23. Kang, B.S., et al., pH sensor using AlGaN/GaN high electron mobility transistors with Sc2O3 in the gate region. Applied Physics Letters, 2007. 91(1). 24. Brazzini, T., et al., Investigation of AlInN barrier ISFET structures with GaN capping for pH detection. Sensors and Actuators B-Chemical, 2013. 176: p. 704-707. 25. Podolska, A., et al., Ion versus pH sensitivity of ungated AlGaN/GaN heterostructure-based devices. Applied Physics Letters, 2010. 97(1). 26. Kang, B.S., et al., Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2007. 91(25). 27. Dzuba, J., et al., Stress investigation of the AlGaN/GaN micromachined circular diaphragms of a pressure sensor. Journal of Micromechanics and Microengineering, 2015. 25(1). 28. Thapa, R., et al., Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection. Applied Physics Letters, 2012. 100(23). 29. Chen, K.H., et al., Low Hg(II) ion concentration electrical detection with AlGaN/GaN high electron mobility transistors. Sensors and Actuators B-Chemical, 2008. 134(2): p. 386-389. 30. Wang, H.T., et al., Fast electrical detection of Hg(II) ions with AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2007. 91(4). 31. Wang, H.T., et al., Selective detection of Hg (II) ions from Cu(II) and Pb(II) using AlGaN/GaN high electron mobility transistors. Electrochemical and Solid State Letters, 2007. 10(11): p. J150-J153. 32. Wang, Y.L., et al., Long-term stability study of botulinum toxin detection with AlGaN/GaN high electron mobility transistor based sensors. Sensors and Actuators B-Chemical, 2010. 146(1): p. 349-352. 33. Wang, Y.L., et al., Botulinum toxin detection using AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2008. 93(26). 34. Lele, T., et al., Sensor useful for detecting biological analyte, e.g. botulinum toxins comprises high electron mobility transistor; and binding molecule that binds specifically to the analyte operably connected to gate region of the transistor, UNIV FLORIDA RES FOUND INC (UYFL-C) REN F (RENF-Individual) PEARTON S J (PEAR-Individual) LELE T (LELE-Individual) UNIV FLORIDA RES FOUND INC (UYFL-C). p. 19. 35. Wang, Y.-L., et al., Oxygen gas sensing at low temperature using indium zinc oxide-gated AlGaN/GaN high electron mobility transistors. Journal of Vacuum Science & Technology B, 2010. 28(2): p. 376-379. 36. Schneider, D.J., et al., HIGH-AFFINITY SSDNA INHIBITORS OF THE REVERSE-TRANSCRIPTASE OF TYPE-1 HUMAN-IMMUNODEFICIENCY-VIRUS. Biochemistry, 1995. 34(29): p. 9599-9610. 37. Tuerk, C. and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990. 249(4968): p. 505-510. 38. Debye, P. and E. Hückel, Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. The theory of electrolytes. I. Lowering of freezing point and related phenomena. Physikalische Zeitschrift, 1923. 24: p. 185-206. 39. Atkins, P.W., Physical Chemistry1998: Oxford University Press. 40. Zheng, G., et al., Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotech, 2005. 23(10): p. 1294-1301.
|