帳號:guest(3.142.199.22)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):詹慧如
作者(外文):Chan, Hui Ju
論文名稱(中文):噴印銅膜之低溫複合燒結技術
論文名稱(外文):Combinational Low-Temperature Sintering for Inkjet-Printed Copper Film
指導教授(中文):羅丞曜
指導教授(外文):Lo, Cheng Yao
口試委員(中文):陳榮順
陳政寰
口試委員(外文):Chen, Rong Shun
Chen, Cheng Huan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:102035505
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:80
中文關鍵詞:噴印奈米銅燒結近紅外光高強度脈衝光電阻率
外文關鍵詞:inkjet-printingcoppersinteringnear-infraredintensive pulsed lightresistivity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:386
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文提出了一種包含低壓乾燥、近紅外光燒結及高強度脈衝光還原步驟之奈米銅粒子步進燒結製程。此製程針對具有低重量百分比及大奈米粒子之銅墨水設計,使其於噴印或塗佈後能以此步進燒結達成與塊材銅具有相同數量級電阻率之薄膜。研究證明,低壓乾燥使奈米銅墨水中之溶劑揮發並使奈米粒子緊密連結,在表面平整度改善同時亦促進後續燒結之效率。以熱能表現的近紅外光燒結因紅外光頻譜與銅之吸收頻譜相近而有高效率,亦改善了單純以高強度脈衝光燒結之銅膜剝離現象。低劑量之高強度脈衝光於本研究中僅做為近紅外光燒結之銅膜還原,避免了連續製程中出現高強度脈衝光連接界面之銅膜不均勻性。
最終,本研究實現具有7.1×10-8 Ω-m電阻率(24%塊材導電率)之銅膜。
This research proposed a sequential copper nanoparticle sintering process, which includes low pressure drying, near infrared sintering, and intensive pulsed light reduction. This process was designed for copper nanoparticle inks with lower solid contents and larger particle sizes, making the reduced copper thin film by inkjet printing or coating having the sane order resistivity as the bulk one. The result proved that the low pressure drying accumulated copper nanoparticles during solvent evaporation, resulting flat surfaces for continuous sintering. The near infrared sintering was efficient because of similar near infrared and copper absorption spectra, improving the copper delamination resulted from intensive pulsed light-only sintering. The low intensive pulsed light dose was used for copper-oxide reduction and avoided uniformity issue of stitching multiple areas.
The final copper thin film resistivity reached 7.1×10-8 Ω-m, which equals to 24 % of the bulk conductivity.
目錄
摘要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 XII
符號表 XIV
第1章 緒論 1
1.1. 前言 1
1.1.1. 噴墨印刷技術應用於軟性電子之必要性 1
1.1.2. 奈米金屬墨水 4
1.1.2.1. 奈米粒子 4
1.1.2.2. 奈米粒子表面效應 5
1.1.2.3. 奈米粒子大小與熔點之關係 6
1.1.2.4. 小粒子高濃度之銅墨水製作挑戰 7
1.1.3. 奈米金屬粒子燒結手法 8
1.1.3.1. 熱燒結(Thermal Sintering) 9
1.1.3.2. 微波燒結(Microwave Sintering) 9
1.1.3.3. 光燒結(Photonic Sintering) 10
1.1.3.4. 電燒結(Electrical Sintering) 12
1.1.3.5. 化學藥劑燒結(Chemical sintering)[12] 12
1.2. 文獻回顧 14
1.2.1. 奈米銅高強度脈衝光燒結 14
1.2.2. 高強度脈衝光燒結後金屬剝離現象 16
1.2.3. 近紅外光(Near-infrared; NIR)燒結 18
1.2.4. 複合燒結製程 19
1.2.4.1. 高強度脈衝光結合微波燒結 19
1.2.4.2. 高強度脈衝光結合IR 20
1.2.4.3. 兩步驟高強度脈衝光 20
1.2.5. 小結 23
1.3. 研究動機 24
第2章 理論與設計 25
2.1. 燒結現象與燒結機制 25
2.1.1. 燒結之驅動力 25
2.1.2. 奈米墨水燒結之機制 26
2.1.3. 燒結之物理性質變化 28
2.1.3.1. 厚度與重量改變: 28
2.1.3.2. 電阻率變化: 29
2.2. 高能量脈衝光燒結原理 29
2.2.1. 光還原氧化銅原理 29
2.2.2. 吸收光譜探討 30
2.2.2.1. IPL照射波段 30
2.2.2.2. 金屬奈米粒子 31
2.2.2.3. 綜合吸收光譜探討 32
2.2.3. 曝光燒結機構探討 33
2.3. 近紅外光燒結原理 35
2.4. 近紅外光暨脈衝光複合燒結理論設計 35
2.5. 奈米銅電阻率優化製程設計 36
2.5.1 噴印圖樣設計 37
2.5.2 奈米銅墨水噴印參數設計 37
2.5.2.1. 液滴間距(Drop space) 37
2.5.2.2. 噴印條件設定 38
2.5.2.3. 噴印參數選定 40
2.5.3. 乾燥製程改善設計 40
2.5.4. 近紅外光燒結參數設計 41
2.5.5. 高強度脈衝光燒結參數設計 41
2.5.6. 物理驗證 42
2.5.6.1. 電性 42
2.5.6.2. 孔洞率 42
2.5.6.3. 表面裂縫率分析 43
第3章 實驗製程方法 45
3.1. 實驗流程圖 45
3.2. 實驗製程與設備 46
3.2.1. 奈米銅膜噴印製程 46
3.2.1.1. Drop on demand 噴印系統 46
3.2.1.2. 實驗材料 49
3.2.2. 奈米銅燒結製程 50
3.2.2.1. 近紅外光燒結系統 50
3.2.2.2. Xenon Sinteron 3000 高能量脈衝光系統 51
3.2.2.3. 熱燒結烘箱 52
3.2.3. 四點探針量測系統 52
3.2.4. 聚焦離子束電子束掃瞄式顯微鏡系統 53
3.2.5. 影像分析方法 54
3.2.5.1. 孔洞率 54
3.2.5.2. 表面裂縫比例 55
第4章 結果與討論 57
4.1. 乾燥製程改良效果 57
4.2. 以NIR優化電阻率 59
4.2.1. 孔洞率 59
4.2.2. NIR燒結能量 61
4.3. 以IPL還原CUO 63
4.4. 燒結後奈米銅膜特性 64
4.4.1. 電阻率及氧含量之關係 64
4.4.2. 電阻率與孔洞率之關係 65
4.4.3. 電阻率與裂縫之關係 69
4.4.4. 附著力刮刀測試結果 72
第5章 結論與未來工作 73
5.1. 結論 73
5.2. 裂縫比例改善 76
5.3. 未來應用 76
參考文獻 77
發表清單 80
[1] Hue P. Le, Progress and trends in ink-jet printing technology, Journal of Imaging Science and Technology 42, 49–62 , 1998.
[2] Jürgen Brünahl, Alex M. Grishin, Piezoelectric shear mode drop-on-demand inkjet actuator, Sensors and Actuator A, 101, 371-382, 2002.
[3] 張立德、牟季美著,”奈米材料和奈米結構”,滄海出版, 2002.
[4] Berta Domènech, Julio Bastos-Arrieta, Amanda Alonso, Jorge Macanás, Maria Muñoz and Dmitri N. Muraviev, Bifunctional Polymer-Metal Nanocomposite Ion Exchange Materials, Intech, 2012.
[5] Anna Moisala, Albert G Nasibulin and Esko I Kauppinen, The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review, Journal of physics, Matter 15 , S3011–S3035, 2003.
[6] Xiao-Feng Tang, Zhen-Guo Yang, Wei-Jiang Wang, A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology, Colloids and Surfaces A: Physicochem. Eng. Aspects 360, 99–104, 2010.
[7] Morteza Oghbaei, Omid Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, Journal of Alloys and Compounds 494, 175–189, 2010.
[8] Seung H Ko, Heng Pan, Costas P Grigoropoulos, Christine K Luscombe, Jean M J Fr´echet and Dimos Poulikakos. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18, 345202, 2007.
[9] Hak-Sung Kim, Sanjay R. Dhage, Dong-Eun Shim, H. Thomas Hahn, Intense pulsed light sintering of copper nanoink for printed electronics., Appl Phys A, 791–798, 2009.
[10] Adphos Technology NIR L-series introduction.
[11] Mark L Allen, Mikko Aronniemi, Tomi Mattila, Ari Alastalo, Kimmo Ojanperä, Mika Suhonen and Heikki Seppä, Electrical sintering of nanoparticle structures, Nanotechnology 19 175201, 2008.
[12] Daisuke Wakuda, Keun-Soo Kim, and Katsuaki Suganuma, Room-Temperature Sintering Process of Ag Nanoparticle Paste, IEEE 32, 2009.
[13] K. A. Schroder, S. C. McCool and W. F. Furlan, Broadcast Photonic Curing of Metallic Nanoparticle Films, NSTI-Nanotech 2006, 3, 2006.
[14] Sooman Lim, Margaret Joyce, Paul D. FlemingN, and Ahmed Tausif Aijazi, Inkjet Printing and Sintering of Nano-Copper Ink., Journal of Imaging Science and Technology, 050506-1-050506-7, 2013.
[15] Dong Jun Lee, Sung Hyeon Park, Shin Jang, Hak Sung Kim,
Je Hoon Oh, and YongWon Song. Pulsed light sintering characteristics of inkjet-printed nanosilver films on a polymer substrate., J. Micromech. Microeng., 21, 125023, 2011.
[16] Martyn Cherrington, Tim C. Claypole, Davide Deganello, Ian Mabbett, Trystan Watson and David Worsley, Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink., J. Mater. Chem., 21, 7562, 2011.
[17] Jolke Perelaer , Robert Abbel, Sebastian Wünscher, Robin Jani, Tim van Lammeren and Ulrich S. Schubert, Roll-to-Roll Compatible Sintering of Inkjet Printed Features by Photonic and Microwave Exposure: From Non-Conductive Ink to 40% Bulk Silver Conductivity in Less Than 15 Seconds Adv. Mater., 24, 2620–2625, 2012.
[18] Robert Abbel, Pit Teunissen, Eric Rubingh, Tim van Lammeren, Romain Cauchois1, Marcel Everaars, Joost Valeton, Sjoerd van de Geijn and Pim Groen, Industrial-scale inkjet printed electronics manufacturing—production up-scaling from concept tools to a roll-to-roll pilot line., Translational Materials Research 1 015002, 2014.
[19] Sung-Hyeon Park, Shin Jang, Dong-Jun Lee, Jehoon Oh and Hak-Sung Kim, Two-step flash light sintering process for crack-free inkjet-printed Ag films., J. Micromech. Microeng. 23, 015013, 2013.
[20] Julia R. Greer, Robert A. Street, Thermal cure effects on electrical performance of nanoparticle silver inks., Acta Materialia, 55, 6345–6349, 2007.
[21] Jolke Perelaer and Ulrich S. Schubert, Novel approaches for low temperature sintering of inkjet-printed inorganic nanoparticles for roll-to-roll (R2R) applications, J. Mater. Res., 28, No. 4, 2013.
[22] T.H. Fleish, G.J. Mains, Reduction of copper oxides by UV radiation and atomic hydrogen studied by XPS., Applications of Surface Scifnce, 10, 51-62, 1982.
[23] Sebastian W¨unscher, Robert Abbel, Jolke Perelaer and Ulrich S. Schubert, Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices., J. Mater. Chem. C, 10, 1039, 2014.
[24] Jeff West, Michael Carter, Steve Smith and James Sears, Photonic Sintering of Silver Nanoparticles: Comparison of Experiment and Theory., ISBN: 978-953-51-0371-4, InTech, 2012.
[25] Sooman Lim, Margaret Joyce, Paul D. Fleming N, and Ahmed Tausif Aijazi, Inkjet Printing and Sintering of Nano-Copper Ink., Journal of Imaging Science and Technology 57, 050506-1–050506-7, 2013.
[26] Saad Ahmed, PhD, Low temperature photonic sintering for printed electronics, Xenon.
[27] Sung-Jun Joo, Sung-Hyeon Park, Chang-Jin Moon and Hak-Sung Kim, A Highly Reliable Copper Nanowire/Nanoparticle Ink Pattern with High Conductivity on Flexible Substrate Prepared via a Flash Light-Sintering Technique, ACS Appl. Mater. Interfaces, 7, 5674−5684, 2015.
[28] Sung-Jun Joo1, Hyun-Jun Hwang and Hak-Sung Kim, Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics., Nanotechnology 25 265601, 2014.
[29] Wan-Ho Chung, Hyun-Jun Hwang, Hak-Sung Kim, Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics., Thin Solid Films 580, 61–70, 2015.
[30] Dimatix Materials Printer DMP-2800 Series User Manual, Document Number PM000040, 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *