帳號:guest(3.137.177.164)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃俊榮
作者(外文):Huang, Chun Jung
論文名稱(中文):磁性奈米粒子合成及表面修飾於生醫應用
論文名稱(外文):Synthesis and Surface Modification of Magnetic Nanoparticles for Biomedical Applications
指導教授(中文):衛榮漢
賴梅鳳
指導教授(外文):Wei, Zung-Hang
Lai, Mei Feng
口試委員(中文):劉博滔
劉達人
口試委員(外文):Liu, Bo Tau
Liu, Da ren
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:102035501
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:59
中文關鍵詞:四氧化三鐵磁性奈米粒子表面修飾
外文關鍵詞:Fe3O4magnetic nanoparticlessurface modification
相關次數:
  • 推薦推薦:0
  • 點閱點閱:25
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在製備能穩定分散在水中且表面具有不同種類官能基之氧化鐵奈米粒子,後欲將其及應用於生物醫學領域。實驗上分別採用共沉法及熱裂解法二種合成方式。材料分析部分,使用超導量子干涉磁量儀 (Superconducting quantum interference device, SQUID)、穿透式電子顯微鏡 (Transmission electron microscope, TEM)、霍氏轉換紅外光譜儀 (Fourier transform infrared spectroscopy, FTIR)、X光粉末繞射儀 (X-ray power diffractometer, XRD)及拉曼散射 (Raman Scattering)分別進行量測氧化鐵奈米粒子的磁性、粒徑大小、表面修飾官能基及結構的鑑定。為了檢測氧化鐵奈米粒子對細胞生物相容性及磁標定量,實驗上亦將所合成之氧化鐵奈米粒子與細胞進行共培養後,分析細胞存活率以檢測奈米粒子造成的細胞毒性及細胞所胞吞磁顆粒的數量。爾後希望能將所合成之氧化鐵奈米粒子應用在生醫領域。
The magnetic nanoparticles (MNPs) have received attention during the recent few years in the biomedical field. In this thesis, Fe3O4 nanoparticles (NPs) are prepared by co-precipitation method and thermal decomposition. The Fe3O4 NPs can easily disperse in water or organic solvent. In the measurements, transmission electron microscopy (TEM) is used to characterize the size and shape of particles. The crystal structures are detected by X-ray diffraction (XRD) and Raman scattering. Magnetization is measured by superconducting quantum interference device (SQUID) magnetometer. In order to apply NPs for biomedical usages, we use 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay to detect the cell biocompatibility. Prussian blue staining and ferrozine-based assay are used to qualitative or quantitative analyze the magnetic labeling efficacy.
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
第二章 理論基礎 3
2-1 奈米材料簡介 3
2-1-1 奈米材料之特性 3
2-2 鐵磁性材料之磁性理論 5
2-2-1 鐵磁性材料分類 5
2-2-2 磁滯現象 7
2-3 磁奈米粒子特性 8
2-3-1 超順磁性 8
2-3-2 單磁區 10
2-4 磁奈米顆粒介紹 11
2-4-1 超順磁氧化鐵奈米粒子之表面修飾 12
2-4-2 超順磁氧化鐵奈米粒子之應用 14
2-5 文獻回顧 15
2-5-1 共沉法 (Co-precipitation) 15
2-5-2 水熱法 (Hydrothermal method) 17
2-5-3 熱裂解法 (High-temperature decomposition) 17
第三章 實驗材料與方法 20
3-1 實驗架構 20
3-2 化學藥品、生物材料及合成儀器架構 20
3-3 實驗步驟 23
3-3-1 共沉法製備氧化鐵奈米粒子 23
3-3-2 熱分解法及換相製備四氧化三鐵奈米粒子 24
3-3-3 細胞培養 25
3-3-4 細胞磁標定 25
3-3-5 比色法定量分析 26
3-3-6 檢測生物相容性-細胞存活率分析 (MTT assay) 27
3-4 特性分析儀器 28
3-4-1 超導量子干涉磁量儀 (Superconducting quantum interference device, SQUID) 28
3-4-2 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 28
3-4-3 霍氏轉換紅外光譜儀 (Fourier transform infrared spectroscopy, FTIR) 28
3-4-4 X光粉末繞射儀 (X-ray power diffractometer) 29
3-4-5 三維奈米拉曼螢光顯微鏡系統 (3D Nanometer Scale Raman PL Microspectrometer) 29
第四章 結果與討論 30
4-1 製備氧化鐵 (Fe3O4)奈米粒子 30
4-1-1 共沉法製備氧化鐵 (Fe3O4)奈米粒子 30
4-1-2 以熱裂解法來製備四氧化三鐵奈米粒子並進行換相 31
4-2 四氧化三鐵 (Fe3O4)奈米粒子磁性量測 33
4-3 氧化鐵奈米粒子表面官能基鑑定 36
4-4 氧化鐵奈米粒子晶體結構鑑定 41
4-5 細胞實驗分析 44
4-5-1 細胞存活率測試 44
4-5-2 利用比色定量來分析磁流體之細胞胞吞量 46
第五章 結論 55
5-1 結論 55
參考文獻 56
[1] D. Kim, Y. Zhang, J. Kehr, T. Klason, B. Bjelke, and M. Muhammed, "Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain," Journal of Magnetism and Magnetic Materials, vol. 225, pp. 256-261, 2001.
[2] K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni, and W. E. Rudzinski, "Biodegradable polymeric nanoparticles as drug delivery devices," Journal of controlled release, vol. 70, pp. 1-20, 2001.
[3] M. Johannsen, U. Gneveckow, L. Eckelt, A. Feussner, N. Waldofner, R. Scholz, S. Deger, P. Wust, S. Loening, and A. Jordan, "Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique," International journal of hyperthermia, vol. 21, pp. 637-647, 2005.
[4] J. Gass, P. Poddar, J. Almand, S. Srinath, and H. Srikanth, "Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions," Advanced Functional Materials, vol. 16, pp. 71-75, 2006.
[5] T. Hyeon, S. S. Lee, J. Park, Y. Chung, and H. B. Na, "Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process," Journal of the American Chemical Society, vol. 123, pp. 12798-12801, 2001.
[6] J. Park, K. An, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, and T. Hyeon, "Ultra-large-scale syntheses of monodisperse nanocrystals," Nature Materials, vol. 3, pp. 891-895, 2004.
[7] T. Hyeon, "Chemical synthesis of magnetic nanoparticles," Chemical Communication, vol. 8, pp. 927-934, 2003.
[8] T. Daou, G. Pourroy, S. Bégin-Colin, J. Greneche, C. Ulhaq-Bouillet, P. Legaré, P. Bernhardt, C. Leuvrey, and G. Rogez, "Hydrothermal synthesis of monodisperse magnetite nanoparticles," Chemistry of Materials, vol. 18, pp. 4399-4404, 2006.
[9] K. J. Klabunde (Ed), Nanoscale materials in chemistry, 2nd ed., New York: Wiley- Interscience, 2004.
[10] B. D. Cullity and C. D. Graham, "Introduction to magnetic materials," Wiley-IEEE Press, 2008.
[11] U. Jeong, X. Teng, Y. Wang, H. Yang, and Y. Xia, "Superparamagnetic colloids: controlled synthesis and niche applications," Advanced Materials, vol. 19, pp. 33-60, 2007.
[12] J. Cheon, N. J. Kang, S. M. Lee, J. H. Lee, J. H. Yoon, and S. J. Oh, "Shape evolution of single-crystalline iron oxide nanocrystals," Journal of the American Chemical Society, vol. 126, pp.1950-1951, 2004.
[13] J. Frenkel and J. Dorfman, "Spontaneous and induced magnetisation in ferromagnetic bodies," Nature, vol. 126, pp. 274-275, 1930.
[14] M. Johannsen, U. Gneveckow, L. Eckelt, A. Feussner, N. Waldofner, R. Scholz, S. Deger, P. Wust, S. Loening, and A. Jordan, "Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique," International journal of hyperthermia, vol. 21, pp. 637-647, 2005.
[15] Y. Jun, J. H. Lee, and J. Cheon, "Chemical Design of Nanoparticle Probes for High-Performance Magnetic Resonance Imaging," Angewandte Chemie International Edition, vol. 47, pp. 5122-5135, 2008.
[16] S. Chikazumi, Physics of Ferromagnetism, 2nd ed., Oxford: Oxford University Press, 1997.
[17] B. D. Cullity and C. D. Graham, "Introduction to magnetic materials," Wiley-IEEE Press, 2008.
[18] C. M. Niemeyer, "Nanoparticles, protein, and nucleic acid: biotechnology meets materialsscience," Angewandte Chemie International Edition, vol. 40, pp. 4128-4158, 2001.
[19] O. Veiseh, J. W. Gunn, M. Zhang, "Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging," Advanced Drug Delivery Reviews, vol. 62, pp. 284-304, 2010.
[20] C. Sun, R. Sze, M. Zhang, "Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI," Wiley Periodicals Inter Science, vol. 78, pp. 550-557, 2005.
[21] K. Donaldel, M. D.V. Felisbero, V. T. Favere, M. Rigoni, N.J. Batistela, M. C. M. Laranjeira "Synthesis and characterization of the iron oxide magnetic particles coated with chitosan biopolymer, " Materials Science and Engineering: C, vol. 28, pp. 509-514, 2008.
[22] M. Mikhaylova, D. K. Kim, C. C. Berry, A. Zagorodni, M. Toprak, A. S. G. Curtis, and M. Muhammed, "BSA Immobilization on Amine-Functionalized Superparamagnetic Iron Oxide Nanoparticles," American Chemical Society, vol. 16, pp. 2344-2354, 2004.
[23] K. J. Klabunde (Ed), Nanoscale materials in chemistry, 2nd ed., New York: Wiley- Interscience, 2004.
[24] S. U. Son, Y. Jang, J. Park, H. B. Na, H. M. Park, H. J. Yun, J. Lee, and T. Hyeon, "Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions," Journal of the American Chemical Society, vol. 126, pp. 5026-5027, 2004.
[25] K. Basavaiah and A. V. Prasada Rao, "Synthesis of Polystyrenesulfonic Stabilized Magnetite Nanoparticles," Chemical Science Transactions, vol. 1, pp. 382-386, 2012.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *