帳號:guest(18.218.245.238)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):肖劍鋒
作者(外文):Xiao, Jian Feng
論文名稱(中文):基於鉑/氮化鎵蕭特基二極體低濃度硫化氫的檢測
論文名稱(外文):Dilute Hydrogen Sulfide Sensing Characteristics of Pt/GaN Schottky Diode
指導教授(中文):王玉麟
指導教授(外文):Wang, Yu Lin
口試委員(中文):王玉麟
陳致真
王禎翰
口試委員(外文):Wang, Yu Lin
Chen, Chi Chen
Wang, J. H.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:102035467
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:34
中文關鍵詞:氣體感測器蕭特基二極體硫化氫氮化鎵
外文關鍵詞:Gas sensorSchottky diodeHydrogen sulfidePt/GaN
相關次數:
  • 推薦推薦:0
  • 點閱點閱:86
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
硫化氫是一種無色、易燃、劇毒、臭雞蛋味的氣體。由於它的毒性,在一些工作場所需要安裝硫化氫感測器,來偵測環境中硫化氫的含量。為符合相關國家的法規,目前市面上的硫化氫感測器的閥值大多數為10 ppm,且偵測原理一般採用金屬氧化物,比如氧化銅或者氧化錫,工作溫度從室溫到數百攝氏度,偵測濃度從10 ppb到100 ppm不等。從上世紀八十年代開始,人們開始研究使用Schottky diode來偵測氣體,在氫氣偵測方面,目前已有很多實驗資料及成果,但仍沒有硫化氫的研究。此論文中硫化氫感測器使用氧化鋁為基板,在其上鍍有一層厚約1.5μm的氮化鎵膜作為半導體。氮化鎵之上共有四層結構,形成肖特基接觸和歐姆接觸,並使用鉑為催化金屬。在高於180攝氏度的環境中,當硫化氫氣體接觸到鉑後裂解為氫原子,進入肖特基接觸介面,降低肖特基勢壘,改變該感測器電阻值。該感測器靈敏度很高,可測低至50 ppb的硫化氫。當濃度高於1 ppm時,偵測反應快,反應時間在10 s內。
Hydrogen sulfide is colorless, flammable and highly toxic gas with typical rotten egg smell. Hydrogen sulfide often results from the bacterial breakdown of organic matters. Because of its toxicity, many hydrogen sulfide personal safety gas detectors are set to alarm at 10 ppm. Most of hydrogen sulfide sensors are made of metal oxide, especially CuO and SnO, and work from room temperature to several hundred Celsius degree. The sensing limit can vary from 10 ppb to 100 ppm. A number of Schottky diodes have been fabricated as gas sensors with catalytic metals since 1980s. Although there are many researches studying in the hydrogen sensing characteristics using Schottky diode, there are still no paper investigating hydrogen sulfide sensing. According to previous researches, Pt/GaN Schottky diode is sensitive to hydrogen and ammonia. Because of its sensing mechanism, it can also be sensitive to hydrogen sulfide. The Ga-face GaN was grown on sapphire substrate by a metal-organic chemical vapor deposition (MOCVD) system. The main structure on the substrate is a Schottky contact, which is formed by Pt and GaN and separated from an Ohmic contact. With present Pt/GaN Schottky diode, we can detect hydrogen sulfide down to 50ppb and get a calibration curve in different concentration. Additionally, this device shows fast response time of around 10 seconds when the concentration of hydrogen sulfide is higher than 1 ppm.
Contents
Chapter 1 Introduction 1
1.1 Hydrogen sulfide 1
1.2 Motivation 3
Chapter 2 Literature Review 5
2.1 Electronic nose 5
2.2 Schottky diode as gas sensor 6
2.3 Hydrogen sulfide sensors and comparison 7
Chapter 3 Experimental 11
3.1 Fabrication of Schottky diode 11
3.1.1 Substrate 12
3.1.2 First layer: Ohmic contact 12
3.1.2 Si3N4 deposition 13
3.1.3 Platinum deposition 14
3.1.4 Final metal deposition 15
3.2 Contact resistance measurement 15
3.3 Sensor measurement 17
Chapter 4 Results and Disscussion 20
4.1 Basic Schottky diode property measurement 20
4.2 Real-time detection 22
4.3 Detection limit 25
4.4 Calibration Curve 25
4.5 H2S poisoning 27
Chapter 5 Application and future work 29
5.1 H2S detector used in industrial workplace 29
5.2 Application in food spoilage detection 29
5.3 Future work: Better design for commercial product 32
Reference 33
Reference
[1] C. L. Yaws, Matheson Gas Data Book, 7th ed.
[2] M. G.Zabetakis, Flammability Characteristics of Combustible GAses and Vapors.
[3] J. Lindenmann, V. Matzi, N. Neuboeck, B. Ratzenhofer-Komenda, A. Maier, and F. M. Smolle-Juettner, "Severe hydrogen sulphide poisoning treated with 4-dimethylaminophenol and hyperbaric oxygen," Diving and Hyperbaric Medicine, vol. 40, pp. 213-217, Dec 2010.
[4] K. Hemminki and M. L. Niemi, "COMMUNITY STUDY OF SPONTANEOUS-ABORTIONS - RELATION TO OCCUPATION AND AIR-POLLUTION BY SULFUR-DIOXIDE, HYDROGEN-SULFIDE, AND CARBON-DISULFIDE," International Archives of Occupational and Environmental Health, vol. 51, pp. 55-63, 1982 1982.
[5] R. P. Smith and R. E. Gosselin, "HYDROGEN-SULFIDE POISONING," Journal of Occupational and Environmental Medicine, vol. 21, pp. 93-97, 1979 1979.
[6] W. W. Burnett, E. G. King, M. Grace, and W. F. Hall, "HYDROGEN-SULFIDE POISONING - REVIEW OF 5 YEARS EXPERIENCE," Canadian Medical Association Journal, vol. 117, pp. 1277-1280, 1977.
[7] S. K. Pandey, K. H. Kim, and K. T. Tang, "A review of sensor-based methods for monitoring hydrogen sulfide," Trac-Trends in Analytical Chemistry, vol. 32, pp. 87-99, Feb 2012.
[8] K. Persaud and G. Dodd, "ANALYSIS OF DISCRIMINATION MECHANISMS IN THE MAMMALIAN OLFACTORY SYSTEM USING A MODEL NOSE," Nature, vol. 299, pp. 352-355, 1982 1982.
[9] F. Roeck, N. Barsan, and U. Weimar, "Electronic nose: Current status and future trends," Chemical Reviews, vol. 108, pp. 705-725, Feb 2008.
[10] A. Arbab, A. Spetz, and I. Lundstrom, "GAS SENSORS FOR HIGH-TEMPERATURE OPERATION BASED ON METAL-OXIDE-SILICON CARBIDE (MOSIC) DEVICES," Sensors and Actuators B-Chemical, vol. 15, pp. 19-23, Aug 1993.
[11] K. Potje-Kamloth, "Semiconductor junction gas sensors," Chemical Reviews, vol. 108, pp. 367-399, Feb 2008.
[12] J. Schalwig, G. Muller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, et al., "Hydrogen response mechanism of Pt-GaN Schottky diodes," Applied Physics Letters, vol. 80, pp. 1222-1224, Feb 18 2002.
[13] F. Zhang, A. Zhu, Y. Luo, Y. Tian, J. Yang, and Y. Qin, "CuO Nanosheets for Sensitive and Selective Determination of H2S with High Recovery Ability," Journal of Physical Chemistry C, vol. 114, pp. 19214-19219, Nov 18 2010.
[14] N. S. Ramgir, S. K. Ganapathi, M. Kaur, N. Datta, K. P. Muthe, D. K. Aswal, et al., "Sub-ppm H2S sensing at room temperature using CuO thin films," Sensors and Actuators B-Chemical, vol. 151, pp. 90-96, Nov 26 2010.
[15] X. Li, Y. Wang, Y. Lei, and Z. Gu, "Highly sensitive H2S sensor based on template-synthesized CuO nanowires," Rsc Advances, vol. 2, pp. 2302-2307, 2012 2012.
[16] L. A. Patil and D. R. Patil, "Heterocontact type CuO-modified SnO2 sensor for the detection of a ppm level H2S gas at room temperature," Sensors and Actuators B-Chemical, vol. 120, pp. 316-323, Dec 14 2006.
[17] R. Ionescu, A. Hoel, C. G. Granqvist, E. Llobet, and P. Heszler, "Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors," Sensors and Actuators B-Chemical, vol. 104, pp. 132-139, Jan 2005.
[18] J. J. Vajo, W. Tsai, and W. H. Weinberg, "MECHANISTIC DETAILS OF THE HETEROGENEOUS DECOMPOSITION OF AMMONIA ON PLATINUM," Journal of Physical Chemistry, vol. 89, pp. 3243-3251, 1985 1985.
[19] M. V. Twigg and M. S. Spencer, "Deactivation of supported copper metal catalysts for hydrogenation reactions," Applied Catalysis a-General, vol. 212, pp. 161-174, Apr 30 2001.
[20] J. C. Rodriguez, J. Santamaria, and A. Monzon, "Hydrogenation of 1,3-butadiene on Pd/SiO2 in the presence of H2S - Deactivation and reactivation of the catalyst," Applied Catalysis a-General, vol. 165, pp. 147-157, Dec 31 1997.
[21] D. U. Hong, C.-H. Han, S. H. Park, I.-J. Kim, J. Gwak, S.-D. Han, et al., "Recovery properties of hydrogen gas sensor with Pd/titanate and Pt/titanate nanotubes photo-catalyst by UV radiation from catalytic poisoning of H2S," Current Applied Physics, vol. 9, pp. 172-178, Jan 2009.
[22] F. D. R. F. M. H. J. Shrives, Analysis of H2S-incidents in geothermal and other industries, 2009.
[23] G. Olafsdottir, R. Jonsdottir, H. L. Lauzon, J. Luten, and K. Kristbergsson, "Characterization of volatile compounds in chilled cod (Gadus morhua) fillets by gas chromatography and detection of quality indicators by an electronic nose," Journal of Agricultural and Food Chemistry, vol. 53, pp. 10140-10147, Dec 28 2005.
[24] G. Olafsdottir, E. Martinsdottir, and E. H. Jonsson, "Gas sensor measurements to determine spoilage of capelin (Mallotus villosus)," Journal of Agricultural and Food Chemistry, vol. 45, pp. 2654-2659, Jul 1997.
[25] Y.-L. Wang, B. H. Chu, C. Y. Chang, K. H. Chen, Y. Zhang, Q. Sun, et al., "Hydrogen sensing of N-polar and Ga-polar GaN Schottky diodes," Sensors and Actuators B-Chemical, vol. 142, pp. 175-178, Oct 12 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *