帳號:guest(18.222.7.151)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):銘 月
作者(外文):Indu
論文名稱(中文):Direct Detection of Cancer Biomarker in Physiological Salt Concentration for FET based Biosensors
論文名稱(外文):直接測量生理鹽環境中癌症生物標記的FET生物感測器
指導教授(中文):王玉麟
陳致真
指導教授(外文):Yu-Lin Wang
口試委員(中文):王禎翰
陳致真
王玉麟
口試委員(外文):Jenghan Wang
Chih-Chen Chen
Yu-Lin Wang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:102035423
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:47
中文關鍵詞:直接測量生理鹽環境中癌症生物標記的FET生物感測器
外文關鍵詞:FET based biosensorsCancer BiomarkerAlGaN/GaN HEMT
相關次數:
  • 推薦推薦:0
  • 點閱點閱:104
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Cancer claims millions of human lives every year. Delayed diagnosis and inefficient prognostic tools lead to high mortality rate. Cancer biomarkers can provide molecular based information that can be used as a supplementary tool by doctors in effective prognosis after surgery or even early stage cancer detection. Our focus is to develop a microelectronic sensor that can detect cancer biomarker, which can be used by physicians to direct patients towards right prognosis. For achieving this, AlGaN/GaN High Electron Mobility Transistor (HEMT) has been used as an Immuno-FET, in which one of the common cancer biomarkers, CEA has been used as the target protein to bind with its antibody. Traditional FET-based sensors have the limitation set by electrostatic screening effect, hindering target detection in physiological salt concentration. Complicated sample pre-treatment methods are often employed prior to detection. Our sensor design can overcome this limitation by immobilizing the receptor on the in plane gate electrode and applying a short duration pulse at the gate. The capacitive type of current obtained from HEMT, can provide us useful information and can depict dynamic mode of measurement. This method of measurement, combined with the high sensitivity of AlGaN/GaN HEMT can overcome the drawbacks of traditional FETs and offer better limit of detection, sensitivity, repeatability and convenience.
Chapter 1 Introduction…………………………………………………………
4
1.1 Motivation………………………………………………………………
4
Chapter 2 Literature Review…………………………………………………..
6
2.1 Cancer…………………………………………………………………..
6
2.1.1 Cancer Biomarker CEA…………………………………………..
9
2.2 FET based biosensors………………………………………………….
12
2.2.1 AlGaN/GaN High Electron Mobility Transistors………………..
16
2.3 Surface Functionalization……………………………………………..
18
Chapter 3 Experimental………………………………………………………..
22
3.1 HEMT Fabrication…………………………………………………….
22
3.2 CEA Antibody Immobilization……………………………………….
23
3.3 Sensor Measurement…………………………………………………..
25
Chapter 4 Result and Discussion………………………………………………
27
4.1 Antibody orientation and stability……………………………………
28
4.2 Non-specific binding from background proteins…………………….
35
4.3 Sensor re-use by elution of proteins…………………………………..
37
4.4 Optimization of device performance………………………………….
38
Chapter 5 Summary……………………………………………………………
43
Reference………………………………………………………………………..
44
[1] M. Gerlinger, A. J. Rowan, S. Horswell, J. Larkin, D. Endesfelder, E. Gronroos, et al., "Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing," New England Journal of Medicine, vol. 366, pp. 883-892, 2012.
[2] M. Verma and U. Manne, "Genetic and epigenetic biomarkers in cancer diagnosis and identifying high risk populations," Critical Reviews in Oncology/Hematology, vol. 60, pp. 9-18, 2006.
[3] P. P. Leong, W. M. Koch, A. Reed, D. Eisele, D. Sidransky, J. Jen, et al., "Distinguishing Second Primary Tumors From Lung Metastases in Patients With Head and Neck Sauamous Cell Carcinoma," Journal of the National Cancer Institute, vol. 90, pp. 972-977, 1998.
[4] J. S. Choi and J. S. Min, "Significance of postoperative serum level of carcinoembryonic antigen (CEA) and actual half life of CEA in colorectal cancer patients," Yonsei Med J, vol. 38, pp. 1-7, 1997.
[5] C. L. Sawyers, "The cancer biomarker problem," Nature, vol. 452, pp. 548-552, 2008.
[6] G. Henze, R. Dummer, H. I. Joiler-Jemelka, R. Böni, and G. Burg, "Serum S100-A Marker for Disease Monitoring in Metastatic Melanoma," Dermatology, vol. 194, pp. 208-212, 1997.
[7] J. R. Biroschak, G. F. Schwartz, J. P. Palazzo, A. D. Toll, K. L. Brill, R. J. Jaslow, et al., "Impact of Oncotype DX on Treatment Decisions in ER-Positive, Node-Negative Breast Cancer with Histologic Correlation," The Breast Journal, vol. 19, pp. 269-275, 2013.
[8] P. Bergveld, "The development and application of FET-based biosensors," Biosensors, vol. 2, pp. 15-33, 1986.
[9] Y.-L. Wang, B. H. Chu, K. H. Chen, C. Y. Chang, T. P. Lele, G. Papadi, et al., "Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors," Applied Physics Letters, vol. 94, pp. 243901, 2009.
[10] C. G. Moertel, J. R. O'Fallon, V. L. W. Go, M. J. O'Connell, and G. S. Thynne, "The preoperative carcinoembryonic antigen test in the diagnosis, staging, and prognosis of colorectal cancer," Cancer, vol. 58, pp. 603-610, 1986.
[11] J. Ferlay, D. M. Parkin, and E. Steliarova-Foucher, "Estimates of cancer incidence and mortality in Europe in 2008," European Journal of Cancer, vol. 46, pp. 765-781, 2010.
[12] P. Gold and S. O. Freedman, "Demonstration of Tumor-Specific Antigens in Human Colonic Carcinomata by Immunological Tolerance and Absorption Techniques," The Journal of Experimental Medicine, vol. 121, pp. 439-462, 1965.
[13] P. Thomas, C. A. Toth, K. S. Saini, J. Milburn Jessup, and G. Steele Jr, "The structure, metabolism and function of the carcinoembryonic antigen gene family," Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol. 1032, pp. 177-189, 1990.
[14] S. Hammarström, "The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues," Seminars in Cancer Biology, vol. 9, pp. 67-81, 1999.
45
[15] M. Jessup and P. Thomas, "Carcinoembryonic antigen: Function in metastasis by human colorectal carcinoma," Cancer and Metastasis Reviews, vol. 8, pp. 263-280, 1989.
[16] D. Boucher, D. Cournoyer, C. P. Stanners, and A. Fuks, "Studies on the Control of Gene Expression of the Carcinoembryonic Antigen Family in Human Tissue," Cancer Research, vol. 49, pp. 847-852, 1989.
[17] D. M. P. Thomson, J. Krupey, S. O. Freedman, and P. Gold, "The Radioimmunoassay of Circulating Carcinoembryonic Antigen of the Human Digestive System," Proceedings of the National Academy of Sciences of the United States of America, vol. 64, pp. 161-167, 1969.
[18] M. Li, J. Y. Li, A. L. Zhao, J. S. He, L. X. Zhou, Y. A. Li, et al., "Comparison of carcinoembryonic antigen prognostic value in serum and tumour tissue of patients with colorectal cancer," Colorectal Disease, vol. 11, pp. 276-281, 2009.
[19] M. J. Duffy, "Carcinoembryonic Antigen as a Marker for Colorectal Cancer: Is It Clinically Useful?," Clinical Chemistry, vol. 47, pp. 624-630, 2001.
[20] A. Rieger and B. Wahren, "CEA levels at recurrence and metastases; importance for detecting secondary disease," Scandinavian journal of gastroenterology, vol. 10, pp. 869-874, 1975.
[21] J. Bhatnagar, H. B. Tewari, M. Bhatnagar, and G. E. Austin, "Comparison of carcinoembryonic antigen in tissue and serum with grade and stage of colon cancer," Anticancer research, vol. 19, pp. 2181-2187, 1999.
[22] H. J. Wanebo, B. Rao, C. M. Pinsky, R. G. Hoffman, M. Stearns, M. K. Schwartz, et al., "Preoperative Carcinoembryonic Antigen Level as a Prognostic Indicator in Colorectal Cancer," New England Journal of Medicine, vol. 299, pp. 448-451, 1978.
[23] J. Bates, R. Rutherford, M. Divilly, J. Finn, H. Grimes, I. O'Muircheartaigh, et al., "Clinical value of CYFRA 21.1, carcinoembryonic antigen, neurone-specific enolase, tissue polypeptide specific antigen and tissue polypeptide antigen in the diagnosis of lung cancer," European Respiratory Journal, vol. 10, pp. 2535-2538, 1997.
[24] V. D. A. Wilson AP, Sibley PE, Kasper LA, Durham AP, el Shami AS., "Multicentre tumour marker reference range study," Anticancer research, vol. 19, pp. 2749-52, 1999.
[25] J. K. Toshihide Kuriyama. (1991). Biosensor Principles and Applications.
[26] J. F. Schenck. (1978). Theory, Design and Biomedical Application of Solid State Chemical Sensors.
[27] M. J. Schoning and A. Poghossian, "Recent advances in biologically sensitive field-effect transistors (BioFETs)," Analyst, vol. 127, pp. 1137-1151, 2002.
[28] G. F. Blackburn. (1987). Biosensors: Fundamentals and Applications.
[29] R. B. M. Schasfoort, R. P. H. Kooyman, P. Bergveld, and J. Greve, "A new approach to immunoFET operation," Biosensors and Bioelectronics, vol. 5, pp. 103-124, 1990.
[30] R. B. M. Schasfoort, P. Bergveld, R. P. H. Kooyman, and J. Greve, "Possibilities and limitations of direct detection of protein charges by means of an immunological field-effect transistor," Analytica Chimica Acta, vol. 238, pp. 323-329, 1990.
46
[31] P. Bergveld, "A critical evaluation of direct electrical protein detection methods," Biosensors and Bioelectronics, vol. 6, pp. 55-72, 1991.
[32] R. Mehandru, B. Luo, B. S. Kang, J. Kim, F. Ren, S. J. Pearton, et al., "AlGaN/GaN HEMT based liquid sensors," Solid-State Electronics, vol. 48, pp. 351-353, 2004.
[33] G. Steinhoff, M. Hermann, W. J. Schaff, L. F. Eastman, M. Stutzmann, and M. Eickhoff, "pH response of GaN surfaces and its application for pH-sensitive field-effect transistors," Applied Physics Letters, vol. 83, pp. 177-179, 2003.
[34] B. S. Kang, H. T. Wang, F. Ren, B. P. Gila, C. R. Abernathy, S. J. Pearton, et al., "pH sensor using AlGaN∕GaN high electron mobility transistors with Sc2O3 in the gate region," Applied Physics Letters, vol. 91, pp. 012110, 2007.
[35] T. Brazzini, A. Bengoechea-Encabo, M. A. Sánchez-García, and F. Calle, "Investigation of AlInN barrier ISFET structures with GaN capping for pH detection," Sensors and Actuators B: Chemical, vol. 176, pp. 704-707, 2013.
[36] A. Podolska, M. Kocan, A. M. G. Cabezas, T. D. Wilson, G. A. Umana-Membreno, B. D. Nener, et al., "Ion versus pH sensitivity of ungated AlGaN/GaN heterostructure-based devices," Applied Physics Letters, vol. 97, pp. 012108, 2010.
[37] K. H. Chen, H. W. Wang, B. S. Kang, C. Y. Chang, Y. L. Wang, T. P. Lele, et al., "Low Hg(II) ion concentration electrical detection with AlGaN/GaN high electron mobility transistors," Sensors and Actuators B: Chemical, vol. 134, pp. 386-389, 2008.
[38] Y.-L. Wang, B. H. Chu, K. H. Chen, C. Y. Chang, T. P. Lele, Y. Tseng, et al., "Botulinum toxin detection using AlGaN∕GaN high electron mobility transistors," Applied Physics Letters, vol. 93, pp. 262101, 2008.
[39] X. Yu, C. Li, Z. N. Low, J. Lin, T. J. Anderson, H. T. Wang, et al., "Wireless hydrogen sensor network using AlGaN/GaN high electron mobility transistor differential diode sensors," Sensors and Actuators B: Chemical, vol. 135, pp. 188-194, 2008.
[40] B. S. Kang, H. T. Wang, F. Ren, S. J. Pearton, T. E. Morey, D. M. Dennis, et al., "Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN∕GaN high electron mobility transistors," Applied Physics Letters, vol. 91, pp. 252103, 2007.
[41] C.-C. Huang, G.-Y. Lee, J.-I. Chyi, H.-T. Cheng, C.-P. Hsu, Y.-R. Hsu, et al., "AlGaN/GaN high electron mobility transistors for protein–peptide binding affinity study," Biosensors and Bioelectronics, vol. 41, pp. 717-722, 2013.
[42] S. J. Pearton, F. Ren, Y.-L. Wang, B. H. Chu, K. H. Chen, C. Y. Chang, et al., "Recent advances in wide bandgap semiconductor biological and gas sensors," Progress in Materials Science, vol. 55, pp. 1-59, 2010.
[43] B. S. Kang, H. T. Wang, F. Ren, and S. J. Pearton, "Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors," Journal of Applied Physics, vol. 104, pp. 031101, 2008.
[44] A. K. M. Greg T. Hermanson, Paul K. Smith. (1992). Immobilized affinity ligand techniques (1 ed.).
47
[45] Z. Grabarek and J. Gergely, "Zero-length crosslinking procedure with the use of active esters," Analytical Biochemistry, vol. 185, pp. 131-135, 1990.
[46] A. J. Lomant and G. Fairbanks, "Chemical probes of extended biological structures: Synthesis and properties of the cleavable protein cross-linking reagent [35S]dithiobis(succinimidyl propionate)," Journal of Molecular Biology, vol. 104, pp. 243-261, 1976.
[47] P. Cuatrecasas and I. Parikh, "Adsorbents for affinity chromatography. Use of N-hydroxysuccinimide esters of agarose," Biochemistry, vol. 11, pp. 2291-2299, 1972/06/01 1972.
[48] J. V. Staros, R. W. Wright, and D. M. Swingle, "Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions," Analytical Biochemistry, vol. 156, pp. 220-222, 1986.
[49] Y.-L. Wang, B. H. Chu, C. Y. Chang, C. F. Lo, S. J. Pearton, A. Dabiran, et al., "Long-term stability study of botulinum toxin detection with AlGaN/GaN high electron mobility transistor based sensors," Sensors and Actuators B: Chemical, vol. 146, pp. 349-352, 2010.
[50] A. Sarkar and T. Daniels-Race, "Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates," Nanomaterials, 2013.
[51] S. Rao, K. Anderson, and L. Bachas, "Oriented immobilization of proteins," Microchimica Acta, vol. 128, pp. 127-143, 1998.
[52] A. A. Karyakin, G. V. Presnova, M. Y. Rubtsova, and A. M. Egorov, "Oriented Immobilization of Antibodies onto the Gold Surfaces via Their Native Thiol Groups," Analytical Chemistry, vol. 72, pp. 3805-3811, 2000.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *