帳號:guest(18.226.87.67)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):嘉佳
作者(外文):Gayathri Pillai
論文名稱(中文):Design of Piezoelectric MEMS Resonators and Oscillators
論文名稱(外文):壓電式微機電共振器與振盪器設計
指導教授(中文):李昇憲
指導教授(外文):Li, Sheng-Shian
口試委員(中文):徐萬泰
吳名清
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:102035422
出版年(民國):104
畢業學年度:104
語文別:英文
論文頁數:91
中文關鍵詞:AlN-SOITPoS品質因子射頻微機電功率負載能力切趾法共振器非等向性零頻率溫度係數
外文關鍵詞:AlN-SOITPoSQuality FactorRF-MEMSPower HandlingApodized ResonatorAnisotropicZero Temperature Coefficient of Frequency
相關次數:
  • 推薦推薦:0
  • 點閱點閱:558
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
This work focuses on the design and analysis of different Super High Frequency AlN-SOI FBAR resonators. The main idea used in this work to reduce the energy loss is the apodization principle. Various polygons and irregular shaped FBAR resonators are studied. The behavior of composite Thin film Piezoelectric on Substrate (TPoS) is examined in detail.
The AlN SOI MEMS - CMOS devices are fabricated using InvenSense Inc. platform. COMSOL simulations for the energy distribution of various FBAR designs are compared and are discussed in the contents of the thesis. In order to have a precise frequency reference for the consumer electronic products, quality factor and electromechanical coupling coefficient should have sufficiently high values. Operation frequency of the resonators in this work is around 3GHz and its electromechanical coupling factor is about 2.5%. A detailed description of the calibration and de-embedding techniques using on chip test keys are described in the thesis. Since the resonators operates in the Giga Hertz range, these resonators are suitable in wireless RF MEMS systems or, when divided down to the MHz-range, as frequency references. To realize a low power RF oscillator design, it is desirable to have a high quality factor (Q) as the power efficiency is determined by the magnitude of the tank impedance at resonance. The resonators reported in this thesis have Q around 2000.
Printed Circuit Board (PCB) using high frequency dielectric substrate is designed to realize Pierce oscillator. An RF NPN BJT is used in the amplifier section and InvenSense's FBAR is used as the resonant tank. Three different circuit topologies are simulated. Agilent's ADS is used to carry out the simulations. Oscillations are observed around 3GHz.
This work also focuses on Lithium Tantalate resonators. The anisotropic nature of the crystal is used to find an optimum cut for temperature independent operation of resonators. Different modes of operations were studied and it was observed that for length extension mode resonator zero Temperature Coefficient of Frequency (TCF) and maximum bandwidth of 2.67% can be achieved when the material axis is oriented along Euler angle (90⁰, 41⁰, 60⁰) and (90⁰, 44⁰, 60⁰) respectively. Close-to-zero TCF resonators can be a strong candidate to make frequency reference devices as the frequency drift would be minimum.
本研究專注於設計與分析不同的超高頻AlN-SOI FBAR共振器,並且透過切趾法(apodization)降低共振器的能量損失。在本研究中亦設計了不同多邊形以及不規則形狀之FBAR共振器,並且針對在絕緣體上之複合薄膜壓電材料(Thin-film Piezoelectric on Silicon, TPoS)之行為進行詳細的探討。
本研究所設計之AlN SOI MEMS-CMOS元件是透過InvenSense Inc.的平台所製作。為了達到精準的時脈基準並應用在商用電子產品中,其共振器需要有足夠高的品質因子以及機電耦合係數,因此本論文透過COMSOL模擬比較不同FBAR設計下之能量分布。本研究所設計之共振器的操作頻率約在3GHz而其機電耦合係數為2.5%。在論文中亦詳述在量測時使用到晶片上所設計之測試元件進行校準以及de-embedding。由於共振器操作於GHz的範圍,因此適合應用於無線射頻微機電系統中或者是當經過除法器到MHz的範圍時可以使用為時脈基準。為了實現低功率的射頻振盪器設計,通常會希望共振器擁有高品質因子,亦即所消耗的功率會受到在共振頻時的阻抗影響,而本論文中所設計共振器之品質因子約為2000。相較於SAW共振器,FBAR形式之共振器有著更好的功率負載能力。
在本研究中透過高頻專用之PCB板,並使用RF NPN BJT當作放大器配合研究中設計之FBAR以實現Pierce振盪器。透過Agilent’s ADS電路模擬三種不同電路設計,從模擬中可以發現其振盪頻率為所設計之3GHz。
在研究中亦著力於Lithium Tantalate共振器,並且利用其非等向性的特性取得對溫度最不敏感的切面。從不同操作模態中可以發現以軸向伸展模態的共振器而言,當材料軸轉向於Euler角度(90⁰, 41⁰, 60⁰)時可以觀察到約為零的頻率溫度係數(Temperature Coefficient of Frequency, TCF)以及2.67%的最大頻寬。由於在此條件下頻率漂移將會為最低,因此共振器將適合使用於商用電子元件中之時脈基準。
ABSTRACT I
摘要 II
ACKNOWLEDGEMENT III
LIST OF FIGURES VII
LIST OF TABLES XI
CHAPTER 1 INTRODUCTION 1
1.1. Motivation and Background 1
1.2. CMOS-MEMS Technology 4
1.3. AlN MEMS Technology 4
1.4. Thesis Overview 4
CHAPTER 2 PIEZOELECTRIC MEMS 6
2.1. Piezoelectricity 6
2.2. Piezoelectric Transducer Modeling 8
2.3. Thin Film Bulk Acoustic Wave Resonator 11
2.4. Lithium Tantalate Based Resonator 13
2.4.1. Euler Angles 14
2.4.2. Material Property Transformation 15
CHAPTER 3 SUPER HIGH FREQUENCY c-FBAR 17
3.1. Introduction 17
3.2. Simulation Settings 19
3.3. Apodization 20
3.4. Layout 21
3.5. Fabrication of AlN on SOI resonators 22
3.6. Measurement Setup 23
3.7. Calibration and De-embedding 25
CHAPTER 4 EXPERIMENTAL RESULTS 27
4.1. Square c-FBAR 27
4.2. Pentagon c-FBAR 33
4.3. Sinc c-FBAR 39
4.4. Top Electrode Patterned c-FBAR 53
4.5. Measurement Data Statistics 55
CHAPTER 5 MICROWAVE PCB AND OSCILLATOR DESIGN 56
5.1. Microstrip line 56
5.2. Pierce Oscillator 60
5.2.1. Type 1 61
5.2.2. Type 2 63
5.2.3. Type 3 66
CHAPTER 6 LITHIUM TANTALATE RESONATOR 70
6.1. Introduction 70
6.2. Optimum Cut Algorithm 71
6.3. Length Extension Mode Resonator 72
6.4. Radial Contour Mode Resonator 76
6.5. Thickness Extension Mode Resonator 79
6.6. Performance comparison 82
6.7. Fabrication 82
6.8. Measurement Setup 83
CHAPTER 7 CONCLUSION AND FUTURE WORKS 85
7.1. Conclusion 85
7.2. Future Work 86
REFERENCE 87
[1] W. C. Tang, T.-C. H. Nguyen, M. W. Judy, and R. T. Howe, “Electrostatic-comb drive of lateral polysilicon resonators,” Sensors and Actuators, A21-A23, pp. 328-331, 1990.

[2] S.-S. Li, Y.-W. Lin, Y. Xie, Z. Ren, and C. T.-C. Nguyen, “Micromechanical hollow disk resonators,” Proceedings, 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS’04), pp.821-824, 2004.

[3] Y. Wang , C. Feng, T.L amers, D. Feld, P. Bradley, and R. Ruby, “FBAR resonator Figure of merit improvements,” Proceedings, IEEE International Ultrasonics Symposium, pp. 861-863, 2010.

[4] S. Gong, G. Piazza, “Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering,” IEEE Transactions on Microwave Theory and Techniques, pp.403-414, 2013.

[5] A. Schaufelbühl, U. Münch, C. Menolfi, O. Brand, H. Baltes, and Q. Huang, “256-pixel CMOS-integrated thermoelectric infrared sensor array,” Proceedings, 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS’01), pp. 200- 203, 2001.

[6] D. Lange, C. Hagleitner, O. Brand, H. Baltes, “CMOS resonant beam gas sensing system with on-chip self excitation,” Proceedings, 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS’01), pp. 547-552, 2001.

[7] S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,” Measurement Science and Technology, vol. 20, pp.1-30, 2009.

[8] R. W. Schwartz, J. Ballato and G. H. Haertling, “Piezoelectric and electro-optic ceramics,” Ceramic Materials for Electronics, 3rd edition, pp. 207-315, 2004.

[9] N .Setter, et al., “Ferroelectric thin films: review of materials, properties, and applications,” Journal of Applied Physics, vol. 100, pp. 1-46, 2006.

[10] P. Muralt, “Texture control and seeded nucleation of nanosize structures of ferroelectric thin films,” Journal of Applied Physics, vol. 100, pp. 051605 - 051605-11, 2006.

[11] P. Muralt, N. Ledermann, J. Baborowski, A. Barzegar, S. Genti, B. Belgacem, S. Petitgrand, A. Bosseboeuf and N. Setter , “Piezoelectric micromachined ultrasonic transducers based on PZT thin films,” IEEE Transactions of Ultrasonic Ferroelectronics Frequency Control, vol. 52, pp. 2276-2288, 2005.

[12] S. Trolier-Mckinstry and P. Muralt, “Thin film piezoelectrics for MEMS,” Journal of Electroceramics, vol. 12, pp. 7-17, 2004.

[13] T. Ikeda, Fundamentals of Piezoelectricity (New York: Oxford University Press) page no. 9, 1990.

[14] Setter N, “ABC of Piezoelectricity and Piezoelectric Materials,” Piezoelectric Materials in Devices,” pp 1-28, 2002.

[15] J. Larson, P. Bradley, S. Wartenberg, and R. Ruby, “Modified Butterworth - Van Dyke circuit for FBAR resonators and automated measurement system,” Proceedings, IEEE Ultrasonics Symposium, vols. 1 and 2, pp. 863-868, 2000.

[16] H. C. Pineda, “Thin film bulk acoustic wave resonator-fabrication and heterogeneous integration with CMOS technologies and sensor applications,” pp.3-7, 2007.

[17] K. Sawamoto, “Energy trapping in a lithium tantalate X-cut resonator,” in Proceedings of the 25th Annual Symposium of Frequency Control, pp. 246-250, 1971.

[18] IEEE Standard on Piezoelectricity , ANSI/IEEE, New York: The Institute of Electrical and Electronics Engineers, 1988.

[19]. R. M. Brannon, “A review of useful theorems involving proper orthogonal matrices referenced to three dimensional physical spaces,” pp. 47-50, 2002.

[20] B. A. Auld, “Acoustic Fields and Waves in Solids,” Krieger, 1990.

[21] W. Pang, H. Zhang, R. C. Ruby, H. Yu, and E.S. Kim, “Analytical and experimental study on the second harmonic mode response of a bulk acoustic wave resonator,” Journal of Micromechanics and Microengieering, vol. 20 , pp.115-125, 2010.

[22] J. D. Larson and Y. Oshmyansky, “Measurement of effective kt2, Q, Rp, Rs vs. temperature for Mo/AlN FBAR resonators,” Proceedings, IEEE Ultrasonics Symposium, pp. 939-43, 2002.

[23] C.-M. Lin, V. Yantchev, J. Zou, Y.-Y. Chen and A. P. Pisano, “Micromachined one-port aluminum nitride Lamb wave resonators utilizing the lowest-order symmetric mode,” Journal of Micromechanical Systems, vol. 23, no. 1, pp. 778-791, 2014.

[24] M. Giovannini, S. Yazici, N.-K. Kuo, and G. Piazza, “Spurious mode suppression via apodization for 1 GHz AlN contour-mode resonators,” Proceedings, IEEE Frequency Control Symposium, pp.1-5, 2012.

[25] S. Hartmann, D. T. Bell, R. C. Rosenfeld, “Impulse model design of acoustic surface-wave filters”, IEEE Transactions on Sonics and Ultrasonics, vol. 20, pp. 80-93, 1973.

[26] D. S. Bindel, E. Qu´evy, T. Koyama, S. Govindjee, J. W. Demel, and R.T. Howe, “Anchor loss simulation in resonators,” Proceedings, 8th IEEE International Conference Micro Electro Mechanical Systems (MEMS’05), pp.133-136, 2005.

[27] U. Madhow, “Introduction to Communication Systems,” University of California, Santa Barbara.

[28] S. Haykin and M. Moher, “Communication Systems,” (5th Edition), Wily & Sons Ltd.
[29] K. Wang, Y. Yu, A.-C. Wong, and C. T.-C. Nguyen, “VHF free-free beam high-Q micromechanical resonators”, Proceedings, 12th International IEEE Micro Electro Mechanical Systems Conference, pp. 453-458, 1999.

[31] IEEE Standard on Piezoelectricity, ANSI/IEEE, Std. 176-1987, New York: The Institute of Electrical and Electronics Engineers, 1987.

[32] J. J. Hanon, P. Lloyd, and R. Smith, “Lithium tantalate and lithium niobate piezoelectric resonators in the medium frequency range with low ratios of capacitance and low temperature coefficients of frequency,” IEEE Transactions on Sonics and Ultrasonics, vol. 17, no. 4, Oct. 1970.

[33] G. K. Fedder, R. T. Howe, T.-J. K. Liu, and E. Que´vy, “Technologies for co-fabricating MEMS and electronics,” Proceedings of the IEEE , vol. 96, no. 2, pp. 306-332, 2008.

[34] K. Hashimoto, “Fundamentals of RF Acoustic Resonators and Their Characterization," Tutorial, IEEE Frequency Control Symposium, 2015.

[35] D.A. Feld, R. Parker, R. Ruby, P. Bradley, and S. Dong, “After 60 Years: A New Formula for Computing Quality Factor is Warranted,” Proceedings of the IEEE Ultrasonics Symposium, pp.431-436, 2008.

[36] R. Garg, P. Bhartia, I. Bhal, and A. Ittipiboon, “Micro Strip Antenna Design Handbook,” Archtech House, 2000.

[37] A. Nelson, J. Hu, J. Kaitilay, R. Ruby, and B. Otis, “A 22μW, 2.0GHz FBAR oscillator,” Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium, pp.1-4, 2011.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *