帳號:guest(18.217.21.3)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):翁敏鳳
作者(外文):Weng, Min-Feng
論文名稱(中文):應用萃智與多屬性效用理論發展技術性強化產品-以碳水化合物檢測裝置原型為例
論文名稱(外文):Applying TRIZ and Multi-Attribute Utility Theory to Develop a Technical Intensive Product with an Empirical Study of Prototype of a Carbohydrate Detecting Device
指導教授(中文):邱銘傳
指導教授(外文):Chiu, Ming-Chuan
口試委員(中文):朱詣尹
王志軒
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:102034701
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:64
中文關鍵詞:糖尿病萃智多屬性效用理論高光譜影像光場相機
外文關鍵詞:DiabetesTheory of Inventive Problem Solving (TRIZ)Multi-Attribute Utility Theory (MAUT)Hyperspectral ImagingLight Field Camera
相關次數:
  • 推薦推薦:0
  • 點閱點閱:359
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
根據國際糖尿病聯合會(International Diabetes Federation)指出2015年患有糖尿病人口已達到4.15億人,糖尿病患者由於本身胰島素無法有效利用而導致代謝問題,因此許多醫生建議患者需藉由飲食控制來監控與管理血糖,病患在飲食之前會根據其經驗施打胰島素劑量調整與估計碳水化合物攝取代換之間的關係,此關係會影響患者本身之血糖水平差異。然而,許多糖尿病病患無法適當地準確計算出食物中碳水化合物含量且現行測量血糖儀器會有造成病患感染問題之風險。故本研究的目的在於提出一方法整合萃智與多屬性效用理論開發一個技術性產品,應用萃智系統化問題解決方法來發展創新產品與服務,在考量技術可行性的情況下提升新產品開發成功的機會,利用多屬性效用理論幫助決策者在不確定性的情況下做出最佳選擇。透過所提出的方法以碳水化合物檢測裝置之實證,其結果顯示出此非侵入式裝置提供給糖尿病患者一不費力與方便性得到食物中碳水化合物含量進而幫助他們血糖控管。
A recent report by the International Diabetes Federation (IDF) indicated that the number of people with diabetes worldwide was anticipated to reach 415 million by 2015. Persons with diabetes must continually monitor their blood glucose levels and manage their diets. A balance between the amount of insulin in a person’s body and the level of carbohydrate intake makes a difference in the blood glucose levels. However, many persons are unable to properly estimate the level of carbohydrates in their food. Moreover, the current apparatus for measuring blood glucose carries the risk of infection if not properly maintained. The purpose of this research is to integrate the Theory of Inventive Problem Solving (TRIZ) and Multi-Attribute Utility Theory (MAUT) to develop a novel technical product for use with diabetic individuals. The proposed methodology was tested and validated with an empirical study using a carbohydrate-detecting device. The innovative device offers a non-invasive and convenient way to provide carbohydrate intake information and to help patients manage their blood glucose levels. The results demonstrate the practical viability of this new approach. This is the first study that integrates TRIZ and MAUT and implements both product and service design using TRIZ. The evaluation of technology feasibility is also considered in this paper.
Abstract III
Table of Contents V
List of Figures VII
List of Tables VIII
1 Introduction 1
2 Literature Review 4
2.1 New Product Development 4
2.2 Theory of Inventive Problem Solving 6
2.3 Multi-Attribute Utility Theory 9
2.4 Summary 12
3 Methodology 13
3.1 Customer Need Analysis 14
3.1.1 Opportunities Exploration and Problem Identification 14
3.2 Concept Generation 16
3.2.1 New Function Requirement 16
3.2.2 New Product Function and Service Function Design 17
3.3 Technology Feasibility Verification 19
3.4 Concept Selection 20
3.5 Innovative New Product/Service Implementation 22
4 Case Study 23
4.1 Diabetic Patient’s Need Analysis 23
4.1.1 Opportunities Exploration and Problem Identification 23
4.2 Concept Generation 27
4.2.1 New Function Requirement 27
4.2.2 New Product Function and Service Function Design 28
4.3 Technology Feasibility Verification 35
4.3.1 Food Recognition 36
4.3.2 Food Volume Estimation 39
4.3.3 Feedback Function 41
4.3.4 Developing a Variety of Product Concepts 42
4.4 Concept Selection 45
4.5 Innovative New Product/Service Implementation 50
5 Discussion 54
6 Conclusion 57
7 Reference 59
[1] International Diabetes Federation. IDF Diabetes Atlas, 7 ed. Brussels, Belgium: International Diabetes Federation, 2015.
[2] Kawamura, T. (2007). The importance of carbohydrate counting in the treatment of children with diabetes. Pediatric diabetes, 8(s6), 57-62.
[3] Bishop, F. K., Maahs, D. M., Spiegel, G., Owen, D., Klingensmith, G. J., Bortsov, A., Thomos, J., and Mayer-Davis, E. J. (2009). The carbohydrate counting in adolescents with type 1 diabetes (CCAT) study. Diabetes Spectrum, 22(1), 56-62.
[4] Brazeau, A. S., Mircescu, H., Desjardins, K., Leroux, C., Strychar, I., Ekoé, J. M., & Rabasa-Lhoret, R. (2013). Carbohydrate counting accuracy and blood glucose variability in adults with type 1 diabetes. Diabetes research and clinical practice, 99(1), 19-23.
[5] Smart, C. E., Ross, K., Edge, J. A., King, B. R., McElduff, P., & Collins, C. E. (2010). Can children with type 1 diabetes and their caregivers estimate the carbohydrate content of meals and snacks?. Diabetic Medicine, 27(3), 348-353.
[6] Mehta, S. N., Quinn, N., Volkening, L. K., & Laffel, L. M. (2009). Impact of carbohydrate counting on glycemic control in children with type 1 diabetes.Diabetes Care, 32(6), 1014-1016.
[7] Ulrich, K. T., & Eppinger, S. D. Product design and development. 2004.
[8] Ogot, M., & Okudan-Kremer, G. (2004). Engineering design: a practical guide. Trafford Publishing.
[9] Nijssen, E. J., & Frambach, R. T. (2000). Determinants of the adoption of new product development tools by industrial firms. Industrial Marketing Management, 29(2), 121-131.
[10] Kleinschmidt, E. J., & Cooper, R. G. (1991). The impact of product innovativeness on performance. Journal of product innovation management, 8(4), 240-251.
[11] Cooper, R. G. (1983). A process model for industrial new product development.Engineering Management, IEEE Transactions on, (1), 2-11.
[12] Booz, & Allen & Hamilton. (1982). New products management for the 1980s. Booz, Allen & Hamilton.
[13] Schilling, M. A., & Hill, C. W. (1998). Managing the new product development process: Strategic imperatives. The Academy of Management Executive, 12(3), 67-81.
[14] Moehrle, M. G. (2005). What is TRIZ? From conceptual basics to a framework for research. Creativity and innovation management, 14(1), 3-13.
[15] Gadd, K. TRIZ for Engineers: Enabling Inventive Problem Solving. 2011.
[16] Mann, D. (2001). An introduction to TRIZ: The theory of inventive problem solving. Creativity and Innovation Management, 10(2), 123-125.
[17] Ilevbare, I. M., Probert, D., & Phaal, R. (2013). A review of TRIZ, and its benefits and challenges in practice. Technovation, 33(2), 30-37.
[18] Sheu, D. D., & Hou, C. T. (2013). TRIZ-based trimming for process-machine improvements: Slit-valve innovative redesign. Computers & Industrial Engineering, 66(3), 555-566.
[19] Cho, C. H., & Kim, K. H. (2010). Product development with TRIZ: design evolution of deburring tools for intersecting holes. Journal of mechanical science and technology, 24(1), 169-173.
[20] Cascini, G., & Rissone, P. (2004). Plastics design: integrating TRIZ creativity and semantic knowledge portals. Journal of engineering design, 15(4), 405-424.
[21] Kremer, G. O., Chiu, M. C., Lin, C. Y., Gupta, S., Claudio, D., & Thevenot, H. (2012). Application of axiomatic design, TRIZ, and mixed integer programming to develop innovative designs: a locomotive ballast arrangement case study.The International Journal of Advanced Manufacturing Technology, 61(5-8), 827-842.
[22] Mansor, M. R., Sapuan, S. M., Zainudin, E. S., Nuraini, A. A., & Hambali, A. (2014). Conceptual design of kenaf fiber polymer composite automotive parking brake lever using integrated TRIZ–Morphological Chart–Analytic Hierarchy Process method. Materials & Design, 54, 473-482.
[23] Wang, C. H. (2015). Using the theory of inventive problem solving to brainstorm innovative ideas for assessing varieties of phone-cameras. Computers & Industrial Engineering, 85, 227-234.
[24] Kim, Y. S., & Cochran, D. S. (2000). Reviewing TRIZ from the perspective of axiomatic design. Journal of Engineering Design, 11(1), 79-94.
[25] Low, M. K., Lamvik, T., Walsh, K., & Myklebust, O. (2001). Manufacturing a green service: engaging the TRIZ model of innovation. Electronics Packaging Manufacturing, IEEE Transactions on, 24(1), 10-17.
[26] Zhang, J., Chai, K. H., & Tan, K. C. (2005). Applying TRIZ to service conceptual design: an exploratory study. Creativity and Innovation Management, 14(1), 34-42.
[27] Chai, K. H., Zhang, J., & Tan, K. C. (2005). A TRIZ-based method for new service design. Journal of Service Research, 8(1), 48-66.
[28] Lee, C. H., Wang, Y. H., Trappey, A. J., & Yang, S. H. (2014). Applying geo-social networking and the theory of inventive problem-solving in service innovation and evaluation. Journal of Industrial and Production Engineering, 31(2), 95-107.
[29] Keeney, & Raiffa, H. (1976). Decisions with multiple objectives. John Wiley.
[30] Dyer, J. S. (2005). MAUT—multiattribute utility theory. In Multiple criteria decision analysis: state of the art surveys (pp. 265-292). Springer New York.
[31] Velasquez, M., & Hester, P. T. (2013). An analysis of multi-criteria decision making methods. International Journal of Operations Research, 10(2), 56-66.
[32] Zionts, S. (1992). Some thoughts on research in multiple criteria decision making. Computers & operations research, 19(7), 567-570.
[33] Suslick, S. B., & Furtado, R. (2001). Quantifying the value of technological, environmental and financial gain in decision models for offshore oil exploration.Journal of Petroleum Science and Engineering, 32(2), 115-125.
[34] Okudan, G. E., Chiu, M. C., & Kim, T. H. (2013). Perceived feature utility-based product family design: a mobile phone case study. Journal of Intelligent Manufacturing, 24(5), 935-949.
[35] Chen, Y., Okudan, G. E., & Riley, D. R. (2010). Decision support for construction method selection in concrete buildings: Prefabrication adoption and optimization. Automation in Construction, 19(6), 665-675.
[36] Min, H. (1994). International supplier selection: a multi-attribute utility approach. International Journal of Physical Distribution & Logistics Management, 24(5), 24-33.
[37] Sanayei, A., Mousavi, S. F., Abdi, M. R., & Mohaghar, A. (2008). An integrated group decision-making process for supplier selection and order allocation using multi-attribute utility theory and linear programming. Journal of the Franklin Institute, 345(7), 731-747.
[38] Chiu, M. C., & Okudan, G. (2008, January). A multi-stakeholder quality function deployment approach to support design decision-making. In Industrial engineering research conference, Vancouver, CA.
[39] Canbolat, Y. B., Chelst, K., & Garg, N. (2007). Combining decision tree and MAUT for selecting a country for a global manufacturing facility. Omega, 35(3), 312-325.
[40] Claudio, D., & Okudan, G. E. (2009). Utility function-based patient prioritisation in the emergency department. European Journal of Industrial Engineering, 4(1), 59-77.
[41] Chapman, G. B., Elstein, A. S., Kuzel, T. M., Nadler, R. B., Sharifi, R., & Bennett, C. L. (1999). A multi-attribute model of prostate cancer patients' preferences for health states. Quality of Life Research, 8(3), 171-180.
[42] Domb, E., Terninko, J., Miller, J., & MacGran, E. (1999). The seventy-six standard solutions: how they relate to the 40 principles of inventive problem solving. TRIZ Journal, 2.
[43] Altshuller, G., Shulyak, L., & Rodman, S. (1997). 40 Principles: TRIZ keys to innovation (Vol. 1). Technical Innovation Center, Inc..
[44] Chang, H. H., & Lu, P. W. (2009). Using a triz-based method to design innovative service quality-A case study on insurance industry. Journal of Quality, 16(3), 179-193.
[45] Lee, C. H., Wang, Y. H., & Trappey, A. J. (2014). Service design for intelligent parking based on theory of inventive problem solving and service blueprint.Advanced Engineering Informatics.
[46] Kirkwood, C. W. (1997). Strategic decision making: Multiobjective decision making with spreadsheets.
[47] Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: preferences and value trade-offs. Cambridge university press.
[48] Huang, P. H., & Chiu, M. C. (2016). Integrating user centered design, universal design and goal, operation, method and selection rules to improve the usability of DAISY player for persons with visual impairments. Applied Ergonomics, 52, 29-42.
[49] ElMasry, G., Wang, N., ElSayed, A., & Ngadi, M. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering, 81(1), 98-107.
[50] Qiao, J., Wang, N., Ngadi, M. O., Gunenc, A., Monroy, M., Gariepy, C., & Prasher, S. O. (2007). Prediction of drip-loss, pH, and color for pork using a hyperspectral imaging technique. Meat science, 76(1), 1-8.
[51] Mehl, P. M., Chen, Y. R., Kim, M. S., & Chan, D. E. (2004). Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. Journal of Food Engineering, 61(1), 67-81.
[52] Raghavendra, R., Yang, B., Raja, K. B., & Busch, C. (2013, June). A new perspective—Face recognition with light-field camera. In Biometrics (ICB), 2013 International Conference on (pp. 1-8). IEEE.
[53] Bishop, T. E., & Favaro, P. (2012). The light field camera: Extended depth of field, aliasing, and superresolution. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(5), 972-986.
[54] Anthimopoulos, M. M., Gianola, L., Scarnato, L., Diem, P., & Mougiakakou, S. G. (2014). A food recognition system for diabetic patients based on an optimized bag-of-features model. Biomedical and Health Informatics, IEEE Journal of, 18(4), 1261-1271.
[55] Scharstein, D., & Szeliski, R. (2003, June). High-accuracy stereo depth maps using structured light. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on (Vol. 1, pp. I-195). IEEE.
[56] Liu, Y., Zhu, Y., Su, Y., & Yuan, Z. (2006). Image based active model adaptation method for face reconstruction and sketch generation. Technologies for E-Learning and Digital Entertainment, 928-933.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *