|
[1] International Diabetes Federation. IDF Diabetes Atlas, 7 ed. Brussels, Belgium: International Diabetes Federation, 2015. [2] Kawamura, T. (2007). The importance of carbohydrate counting in the treatment of children with diabetes. Pediatric diabetes, 8(s6), 57-62. [3] Bishop, F. K., Maahs, D. M., Spiegel, G., Owen, D., Klingensmith, G. J., Bortsov, A., Thomos, J., and Mayer-Davis, E. J. (2009). The carbohydrate counting in adolescents with type 1 diabetes (CCAT) study. Diabetes Spectrum, 22(1), 56-62. [4] Brazeau, A. S., Mircescu, H., Desjardins, K., Leroux, C., Strychar, I., Ekoé, J. M., & Rabasa-Lhoret, R. (2013). Carbohydrate counting accuracy and blood glucose variability in adults with type 1 diabetes. Diabetes research and clinical practice, 99(1), 19-23. [5] Smart, C. E., Ross, K., Edge, J. A., King, B. R., McElduff, P., & Collins, C. E. (2010). Can children with type 1 diabetes and their caregivers estimate the carbohydrate content of meals and snacks?. Diabetic Medicine, 27(3), 348-353. [6] Mehta, S. N., Quinn, N., Volkening, L. K., & Laffel, L. M. (2009). Impact of carbohydrate counting on glycemic control in children with type 1 diabetes.Diabetes Care, 32(6), 1014-1016. [7] Ulrich, K. T., & Eppinger, S. D. Product design and development. 2004. [8] Ogot, M., & Okudan-Kremer, G. (2004). Engineering design: a practical guide. Trafford Publishing. [9] Nijssen, E. J., & Frambach, R. T. (2000). Determinants of the adoption of new product development tools by industrial firms. Industrial Marketing Management, 29(2), 121-131. [10] Kleinschmidt, E. J., & Cooper, R. G. (1991). The impact of product innovativeness on performance. Journal of product innovation management, 8(4), 240-251. [11] Cooper, R. G. (1983). A process model for industrial new product development.Engineering Management, IEEE Transactions on, (1), 2-11. [12] Booz, & Allen & Hamilton. (1982). New products management for the 1980s. Booz, Allen & Hamilton. [13] Schilling, M. A., & Hill, C. W. (1998). Managing the new product development process: Strategic imperatives. The Academy of Management Executive, 12(3), 67-81. [14] Moehrle, M. G. (2005). What is TRIZ? From conceptual basics to a framework for research. Creativity and innovation management, 14(1), 3-13. [15] Gadd, K. TRIZ for Engineers: Enabling Inventive Problem Solving. 2011. [16] Mann, D. (2001). An introduction to TRIZ: The theory of inventive problem solving. Creativity and Innovation Management, 10(2), 123-125. [17] Ilevbare, I. M., Probert, D., & Phaal, R. (2013). A review of TRIZ, and its benefits and challenges in practice. Technovation, 33(2), 30-37. [18] Sheu, D. D., & Hou, C. T. (2013). TRIZ-based trimming for process-machine improvements: Slit-valve innovative redesign. Computers & Industrial Engineering, 66(3), 555-566. [19] Cho, C. H., & Kim, K. H. (2010). Product development with TRIZ: design evolution of deburring tools for intersecting holes. Journal of mechanical science and technology, 24(1), 169-173. [20] Cascini, G., & Rissone, P. (2004). Plastics design: integrating TRIZ creativity and semantic knowledge portals. Journal of engineering design, 15(4), 405-424. [21] Kremer, G. O., Chiu, M. C., Lin, C. Y., Gupta, S., Claudio, D., & Thevenot, H. (2012). Application of axiomatic design, TRIZ, and mixed integer programming to develop innovative designs: a locomotive ballast arrangement case study.The International Journal of Advanced Manufacturing Technology, 61(5-8), 827-842. [22] Mansor, M. R., Sapuan, S. M., Zainudin, E. S., Nuraini, A. A., & Hambali, A. (2014). Conceptual design of kenaf fiber polymer composite automotive parking brake lever using integrated TRIZ–Morphological Chart–Analytic Hierarchy Process method. Materials & Design, 54, 473-482. [23] Wang, C. H. (2015). Using the theory of inventive problem solving to brainstorm innovative ideas for assessing varieties of phone-cameras. Computers & Industrial Engineering, 85, 227-234. [24] Kim, Y. S., & Cochran, D. S. (2000). Reviewing TRIZ from the perspective of axiomatic design. Journal of Engineering Design, 11(1), 79-94. [25] Low, M. K., Lamvik, T., Walsh, K., & Myklebust, O. (2001). Manufacturing a green service: engaging the TRIZ model of innovation. Electronics Packaging Manufacturing, IEEE Transactions on, 24(1), 10-17. [26] Zhang, J., Chai, K. H., & Tan, K. C. (2005). Applying TRIZ to service conceptual design: an exploratory study. Creativity and Innovation Management, 14(1), 34-42. [27] Chai, K. H., Zhang, J., & Tan, K. C. (2005). A TRIZ-based method for new service design. Journal of Service Research, 8(1), 48-66. [28] Lee, C. H., Wang, Y. H., Trappey, A. J., & Yang, S. H. (2014). Applying geo-social networking and the theory of inventive problem-solving in service innovation and evaluation. Journal of Industrial and Production Engineering, 31(2), 95-107. [29] Keeney, & Raiffa, H. (1976). Decisions with multiple objectives. John Wiley. [30] Dyer, J. S. (2005). MAUT—multiattribute utility theory. In Multiple criteria decision analysis: state of the art surveys (pp. 265-292). Springer New York. [31] Velasquez, M., & Hester, P. T. (2013). An analysis of multi-criteria decision making methods. International Journal of Operations Research, 10(2), 56-66. [32] Zionts, S. (1992). Some thoughts on research in multiple criteria decision making. Computers & operations research, 19(7), 567-570. [33] Suslick, S. B., & Furtado, R. (2001). Quantifying the value of technological, environmental and financial gain in decision models for offshore oil exploration.Journal of Petroleum Science and Engineering, 32(2), 115-125. [34] Okudan, G. E., Chiu, M. C., & Kim, T. H. (2013). Perceived feature utility-based product family design: a mobile phone case study. Journal of Intelligent Manufacturing, 24(5), 935-949. [35] Chen, Y., Okudan, G. E., & Riley, D. R. (2010). Decision support for construction method selection in concrete buildings: Prefabrication adoption and optimization. Automation in Construction, 19(6), 665-675. [36] Min, H. (1994). International supplier selection: a multi-attribute utility approach. International Journal of Physical Distribution & Logistics Management, 24(5), 24-33. [37] Sanayei, A., Mousavi, S. F., Abdi, M. R., & Mohaghar, A. (2008). An integrated group decision-making process for supplier selection and order allocation using multi-attribute utility theory and linear programming. Journal of the Franklin Institute, 345(7), 731-747. [38] Chiu, M. C., & Okudan, G. (2008, January). A multi-stakeholder quality function deployment approach to support design decision-making. In Industrial engineering research conference, Vancouver, CA. [39] Canbolat, Y. B., Chelst, K., & Garg, N. (2007). Combining decision tree and MAUT for selecting a country for a global manufacturing facility. Omega, 35(3), 312-325. [40] Claudio, D., & Okudan, G. E. (2009). Utility function-based patient prioritisation in the emergency department. European Journal of Industrial Engineering, 4(1), 59-77. [41] Chapman, G. B., Elstein, A. S., Kuzel, T. M., Nadler, R. B., Sharifi, R., & Bennett, C. L. (1999). A multi-attribute model of prostate cancer patients' preferences for health states. Quality of Life Research, 8(3), 171-180. [42] Domb, E., Terninko, J., Miller, J., & MacGran, E. (1999). The seventy-six standard solutions: how they relate to the 40 principles of inventive problem solving. TRIZ Journal, 2. [43] Altshuller, G., Shulyak, L., & Rodman, S. (1997). 40 Principles: TRIZ keys to innovation (Vol. 1). Technical Innovation Center, Inc.. [44] Chang, H. H., & Lu, P. W. (2009). Using a triz-based method to design innovative service quality-A case study on insurance industry. Journal of Quality, 16(3), 179-193. [45] Lee, C. H., Wang, Y. H., & Trappey, A. J. (2014). Service design for intelligent parking based on theory of inventive problem solving and service blueprint.Advanced Engineering Informatics. [46] Kirkwood, C. W. (1997). Strategic decision making: Multiobjective decision making with spreadsheets. [47] Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: preferences and value trade-offs. Cambridge university press. [48] Huang, P. H., & Chiu, M. C. (2016). Integrating user centered design, universal design and goal, operation, method and selection rules to improve the usability of DAISY player for persons with visual impairments. Applied Ergonomics, 52, 29-42. [49] ElMasry, G., Wang, N., ElSayed, A., & Ngadi, M. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering, 81(1), 98-107. [50] Qiao, J., Wang, N., Ngadi, M. O., Gunenc, A., Monroy, M., Gariepy, C., & Prasher, S. O. (2007). Prediction of drip-loss, pH, and color for pork using a hyperspectral imaging technique. Meat science, 76(1), 1-8. [51] Mehl, P. M., Chen, Y. R., Kim, M. S., & Chan, D. E. (2004). Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. Journal of Food Engineering, 61(1), 67-81. [52] Raghavendra, R., Yang, B., Raja, K. B., & Busch, C. (2013, June). A new perspective—Face recognition with light-field camera. In Biometrics (ICB), 2013 International Conference on (pp. 1-8). IEEE. [53] Bishop, T. E., & Favaro, P. (2012). The light field camera: Extended depth of field, aliasing, and superresolution. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(5), 972-986. [54] Anthimopoulos, M. M., Gianola, L., Scarnato, L., Diem, P., & Mougiakakou, S. G. (2014). A food recognition system for diabetic patients based on an optimized bag-of-features model. Biomedical and Health Informatics, IEEE Journal of, 18(4), 1261-1271. [55] Scharstein, D., & Szeliski, R. (2003, June). High-accuracy stereo depth maps using structured light. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on (Vol. 1, pp. I-195). IEEE. [56] Liu, Y., Zhu, Y., Su, Y., & Yuan, Z. (2006). Image based active model adaptation method for face reconstruction and sketch generation. Technologies for E-Learning and Digital Entertainment, 928-933.
|