帳號:guest(18.225.175.174)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):梁瑜
作者(外文):Liang,Yu
論文名稱(中文):應用基因演算法求解半導體黃光區具有 專用機台特性之產能規劃問題
論文名稱(外文):An application of Genetic Algorithm in solving the capacity allocation problem with machine dedication in photolithography area
指導教授(中文):陳建良
指導教授(外文):James C. Chen
口試委員(中文):陳子立
陳盈彥
口試委員(外文):Chen,Tzu-Li
Chen,Yin-Yann
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:102034541
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:61
中文關鍵詞:晶圓廠機台綁機限制黃光區基因演算法整數規劃
外文關鍵詞:Wafer fabricationMachine dedicationPhotolithography areaGenetic algorithmInteger programming
相關次數:
  • 推薦推薦:0
  • 點閱點閱:605
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
半導體晶圓製造是一個複雜且高製程能力標準的產業,如何提升機台使用率已達到客戶交期是一個重要的議題。故在本研究中,將提出一個整數規劃模型與啟發式演算法解決半導體製造業黃光區的負荷平衡的問題。考慮機台能力、機台綁機與光照限制,本研究模型之目標式為最小化機台間負荷差異。機台能力代表每個產品必須在某些特定規格的機台下加工,機台綁機限制則是要確保晶圓批的品質,如果第一層關鍵層在某特定機台加工,則之後回流的每層關鍵層皆須在此機台加工。本研究進行兩方法的比較、最佳參數的實驗設計、經實驗驗證本研究方法之成效,顯示基因演算法可在合理之求解時間內獲得近似最佳解。最後,針對機台能力彈性與光罩數量彈性分析,找出與適合的彈性百分比可供未來研究與半導體業參考。

關鍵字: 晶圓廠、機台綁機限制、黃光區、基因演算法、整數規劃
Wafer fabrication is a complicate and high process capability manufacturing, how to utilize the machine capacity efficiency in order to meet the customer deadline is a very important issue.in this paper, we proposed a integer programming model and heuristic algorithm approach to solve the loading balance problem for photolithography area in semiconductor manufacturing industry. Taking process capability, machine dedication and reticle constraint into account, we want to minimize the difference of each machine’ loading. Process capability is means that each product needs to be processed on the machines that meet the process specification. Machine dedication means that if the first critical layer of this wafer assigned to certain machine, than the following critical layers of this wafer need to be processed on this certain machine in order to ensure the wafer quality. This research compared the result of two methods and found the best parameter setting of genetic algorithm, the computational performance of genetic algorithm shows that we can find the near optimal solution in the reasonable time. Finally, this research analyzed the machine capability and reticle flexibility that found the best percentage which can be a reference for the future research and real semiconductor industry.
Key words: Wafer fabrication, Machine dedication, Photolithography area, Genetic algorithm、Integer programming
摘要 I
ABSTRACT II
致謝 III
CONTENTS IV
LIST OF TABLES V
LIST OF FIGURES VI
Chapter 1 INTRODUCTION 1
1.1 Background 1
1.2 Research motivation 3
1.3 Research objective and scope 4
1.4 Structure of thesis 5
Chapter 2 LITERATURE REVIEW 6
2.1 Characteristics of photolithography area 6
2.2 Dispatching and scheduling rule of photolithography process 12
2.3 Genetic Algorithm 17
2.4 Summary of literature review 25
Chapter 3 PROBLEM RESEARCH AND STRATEGY 26
3.1 Problem Definition and analysis 26
3.2 Problem formulation 29
3.3 A demonstrative example 33
Chapter 4 SOLUTION METHOD 36
4.1 Traditional genetic algorithm 36
4.2 Algorithm framework 37
4.3 Algorithm steps analysis 38
Chapter 5 COMPUTATIONAL DISCUSSION 44
5.1 Lingo scenario analysis 44
5.2 Large scale problem description 45
5.3 Optimal parameter setting 47
5.4 Machine capability flexibility analysis 50
5.5 Reticle available quantity flexibility analysis 51
Chapter 6 CONCLUSIONS AND SUGGESTIONS 57
6.1 Conclusions 57
6.2 Suggestions for the future research 58
REFERENCE 59
Akcalt, E., Nemoto, K., & Uzsoy, R. (2001). Cycle-time improvements for photolithography process in semiconductor manufacturing. Semiconductor Manufacturing, IEEE Transactions on, 14(1), 48-56.
Arisha, A., & Young, P. (2004, December). Intelligent simulation-based lot scheduling of photolithography toolsets in a wafer fabrication facility. In Proceedings of the 36th conference on winter simulation (pp. 1935-1942). Winter Simulation Conference.
Bai, X., & Gershwin, S. B. (1989). A manufacturing scheduler's perspective on semiconductor fabrication (No. VLSI-MEMO-89-518). MASSACHUSETTS INST OF TECH CAMBRIDGE MICROSYSTEMS RESEARCH CENTER.
Bhandari, D., Murthy, C. A., & Pal, S. K. (1996). Genetic algorithm with elitist model and its convergence.
International Journal of Pattern Recognition and Artificial Intelligence, 10(06), 731-747.
Chou, W., & Everton, J. (1996, November). Capacity planning for development wafer fab expansion. In Advanced Semiconductor Manufacturing Conference and Workshop, 1996. ASMC 96 Proceedings. IEEE/SEMI 1996 (pp. 17-22). IEEE.
Chou, Y. C. (2000). A methodology for product mix planning in semiconductor foundry manufacturing. Semiconductor Manufacturing, IEEE Transactions on, 13(3), 278-285.
Chern, C. C., & Liu, Y. L. (2003). Family-based scheduling rules of a sequence-dependent wafer fabrication system. Semiconductor Manufacturing, IEEE Transactions on, 16(1), 15-25.
Chen, J. C., Chen, C. W., Lin, C. J., & Rau, H. (2005). Capacity planning with capability for multiple semiconductor manufacturing fabs. Computers & Industrial Engineering, 48(4), 709-732.
Chung, S. H., Huang, C. Y., & Lee, A. H. I. (2006). Capacity allocation model for photolithography workstation with the constraints of process window and machine dedication. Production Planning & Control, 17(7), 678-688.
Cakici, E., & Mason, S. J. (2007). Parallel machine scheduling subject to auxiliary resource constraints. Production Planning and Control, 18(3), 217-225.
Chung, S. H., Huang, C. Y., & Lee, A. H. (2008). Heuristic algorithms to solve the capacity allocation problem in photolithography area (CAPPA). OR Spectrum, 30(3), 431-452.
Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering optimization (Vol. 7). John Wiley & Sons.
Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM Journal on Computing, 2(2), 88-105.
Holland, J. H. (1975). Adaptation in natural and artificial system: an introduction with application to biology, control and artificial intelligence. Ann Arbor, University of Michigan Press.
Hughes, R., & Shott, J. D. (1986). The future of automation for high-volume wafer fabrication and ASIC manufacturing. Proceedings of the IEEE, 74(12), 1775-1793.
Hung, Y. F., & Cheng, G. J. (2002). Hybrid capacity modeling for alternative machine types in linear programming production planning. IIE Transactions, 34(2), 157-165.
Johansson, B., Jain, S., Montoya-Torres, J., Hugan, J., & Yücesan, E. A MULTISTAGE MATHEMATICAL PROGRAMMING BASED SCHEDULING APPROACH FOR THE PHOTOLITHOGRAPHY AREA IN SEMICONDUCTOR MANUFACTURING.
Kumar, P. R. (1993). Re-entrant lines. Queueing systems, 13(1-3), 87-110.
Kim, Y. D., Kim, J. U., Lim, S. K., & Jun, H. B. (1998). Due-date based scheduling and control policies in a multiproduct semiconductor wafer fabrication facility. Semiconductor Manufacturing, IEEE Transactions on, 11(1), 155-164.
Kishimoto, M., Ozawa, K., Watanabe, K., & Martin, D. (2001). Optimized operations by extended X-factor theory including unit hours concept. Semiconductor Manufacturing, IEEE Transactions on, 14(3), 187-195.
Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992-1007.
Leachman, R. C., & Carmon, T. F. (1992). On capacity modeling for production planning with alternative machine types. IIE transactions, 24(4), 62-72.
Lu, S. C., Ramaswamy, D., & Kumar, P. R. (1994). Efficient scheduling policies to reduce mean and variance of cycle-time in semiconductor manufacturing plants. Semiconductor Manufacturing, IEEE Transactions on, 7(3), 374-388.
Liang, Y.Y. and Chou, Y.C. (2003),Option-based capacity planning for semiconductor manufacturing, in 2003 IEEE International Symposium on Semiconductor Manufacturing, 77–80.
Low, C. P., & Fang, C. (2005). On the load-balanced demand points assignment problem in large-scale wireless LANs. In Information Networking. Convergence in Broadband and Mobile Networking (pp. 21-30). Springer Berlin Heidelberg.
Nemoto, K., Akcali, E., & Uzsoy, R. M. (2000). Quantifying the benefits of cycle time reduction in semiconductor wafer fabrication. Electronics Packaging Manufacturing, IEEE Transactions on, 23(1), 39-47.
Park, S., Fowler, J., Carlyle, M., & Hickie, M. (1999). Assessment of potential gains in productivity due to proactive reticle management using discrete event simulation. In Simulation Conference Proceedings, 1999 Winter (Vol. 1, pp. 856-864). IEEE.
Robinson, J. K., & Giglio, R. (1999). Capacity planning for semiconductor wafer fabrication with time constraints between operations. In Simulation Conference Proceedings, 1999 Winter (Vol. 1, pp. 880-887). IEEE.
Rudolph, G. (2001). Evolutionary search under partially ordered fitness sets. Universität Dortmund.
Swaminathan, J. M. (2000). Tool capacity planning for semiconductor fabrication facilities under demand uncertainty. European Journal of Operational Research, 120(3), 545-558.
Shr, A. M., Liu, A., & Chen, P. P. (2008). Load Balancing Among Photolithography Machines in the Semiconductor Manufacturing System. J. Inf. Sci. Eng., 24(2), 379-391.
Sarin, S. C., Varadarajan, A., & Wang, L. (2011). A survey of dispatching rules for operational control in wafer fabrication. Production Planning and Control, 22(1), 4-24.
Thompson, M. (1996). Meeting the semiconductor wafer fabrication challenge with simulation-based scheduling-Compared to most discrete manufacturing processes, semiconductor wafer fabrication posis unique planning and. IIE Solutions, 28(5), 30-35.
Toktay, L. B., & Uzsoy, R. (1998). A capacity allocation problem with integer side constraints. European Journal of Operational Research, 109(1), 170-182.
Wu, M. C., Huang, Y. L., Chang, Y. C., & Yang, K. F. (2006). Dispatching in semiconductor fabs with machine-dedication features. The International Journal of Advanced Manufacturing Technology, 28(9-10), 978-984.
Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary computation, 8(2), 173-195.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *