帳號:guest(3.137.218.83)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):盧惠文
作者(外文):Lu, Hui Wen
論文名稱(中文):太陽光電躉購費率對減碳效益之評估研究-結合資料倉儲及系統動態學之運用
論文名稱(外文):Carbon Reduction Evaluation for Solar PV Feed-in Tariff rates - A Combination of System Dynamics Approach and Data Warehouse
指導教授(中文):張瑞芬
指導教授(外文):Amy J. C. Trappey
口試委員(中文):洪一峯
歐嘉瑞
口試委員(外文):Hung, Yi Feng
Ou, Jia Ruey
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:102034527
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:77
中文關鍵詞:減碳效益分析太陽光電躉購費率系統動態學資料倉儲
外文關鍵詞:Carbon Reduction Benefit AnalysisPhotovoltaicFeed-in TariffSystem Dynamics ApproachData Warehouse
相關次數:
  • 推薦推薦:0
  • 點閱點閱:261
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
由於工業與經濟的快速發展,人類對於能源的需求量逐年增加,其中化石能源的消耗量也逐年提升,然而化石能源的消耗會造成大量溫室氣體的排放並加速地球暖化現象。因此為吸引大眾或公司投資再生及永續能源,如太陽光電系統,許多國家紛紛提出綠色能源政策,例如躉購費率及資本補助等誘因來促進綠色能源發展。臺灣則於2009年提出了再生能源發展條例,該條例設置一個長期且固定的躉購費率之再生能源電能固定價格強制收購(Feed-in Tariff, FIT)制度,以提升民眾與企業設置再生能源的誘因,確保於二十年期間以一固定的費率保證收購再生能源的發電量。每年政府會依照再生能源的建置成本、年運轉維護費、年售電量等因子做躉購費率的計算,若是費率訂得太低,便無法吸引民間投資再生能源;訂得太高,則會對於政府財政造成龐大的負擔。
因此為探討目前臺灣的再生能源推廣目標,是否能使能源需求、環境問題和經濟考量(E3)這三個面向之議題達到平衡,本研究採用系統動態學(System Dynamics, SD)建構一太陽光電躉購之減碳效益評估模型,除考量躉購費率對太陽光電裝置容量、二氧化碳減排量及進口能源依存度之影響評估外,亦以進行不同躉購費率制度設計,如:階梯式、遞減式費率制度之情境模擬的減碳效益評估。由於能源歷史資料以Excel、PDF、html表格等不同的檔案形式儲存於不同的能源資訊平台,因此本研究以資訊整合的概念為出發點,建立一管理並儲存能源歷史資料的資料倉儲,且不同的決策模式需要不同的維度,因此須根據分析模式建立多維度資料方塊。本研究首先先從各個能源資訊平台蒐集研究所需數據,將數據整理並以統一的格式儲存於資料倉儲中,利用星狀架構的多維度資料方塊,提供更全面性的資訊視野。於分析前,使用者能藉由多維度的特性從不同維度來觀測能源發展趨勢,進而利用SQL語法將資料導入至本研究所建構之太陽光電躉購之減碳效益評估模型內做為模擬數值。
本研究以德國遞減式躉購費率及西班牙階梯式躉購費率作為情境模擬,模擬結果顯示使用逐年遞減式躉購費率雖然其減碳量相對而言較少,但是其能夠有效降低減碳成本,同時亦能減緩進口能源依存度,因此採用遞減式躉購費率為較佳的方案。期望藉由此模擬結果可協助政府制定躉購費率時,量化且具備時間軸之評估工具。
Due to rapid industrial development and economic growth, the demand for energy consumption has increased gradually. Fossil fuels (coal, natural gas, and petroleum) account for 90% of non-renewable energy source. However, the combustion of fossil fuels is the major source of pollutants which will result in greenhouse gas emissions and global warming. Taiwan government has enacted the Statute for Renewable Energy Development, which guarantees that the public who own renewable electricity generation facilities, such as roof-top solar photovoltaic (PV) systems, will receive a fixed price for all of the electricity they generate for a contract term of twenty years. For government, how to set the appropriate feed-in tariff (FIT) rates is the major issue because the low FIT rates will make it unattractive to invest in renewable energy but the high FIT rate will cause government's financial burden.
Therefore, in order to investigate if the current renewable energy promotion policies in Taiwan can make energy demand, environmental concerns and economic considerations (E3) reach balance, this research adopts system dynamics (SD) approach to develop an analysis model to evaluate FIT policy. The impacts of FIT on solar PV installed capacities, carbon dioxide emissions and energy dependency on imports are all considered. There are lots of energy-related platforms providing various energy data with different storage format. Therefore, with the concept of information integration, this research establishes a data warehouse (DW) to store and manage historical energy data collected from global energy platform. However, different decision-making models require various data dimensions, so the multi-dimensional data cubes should be built according to analysis model. In this research, the DW is built based on star-type data cube design, which provides comprehensive view of information. The data can be queried and then used as input data to plot the data trend using line graphs. It is necessary to understand and compare the data from different perceptions before analysis. Then, the data can be used as the input data of SD model with SQL syntax.
The SD model simulates the scenarios of policies for promoting renewable energy which reference the FIT rate of Germany and Spain. The simulation results show that the adoption of Germany FIT policy (where FIT declines at 1% annually) will effectively reduce the cost of carbon reduction and energy dependency on imports. Therefore, a gradual decline in FIT rates would be a better choice. The SD simulation results are valuable reference for governments to adjust the appropriate FIT rates.
中文摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VI
一、 緒論 1
1.1 研究背景與動機 1
1.2 研究範圍與目的 5
1.3 研究方法與步驟 6
二、 文獻探討 8
2.1 現有相關能源資訊平台 8
2.1.1 國際能源署(International Energy Agency, IEA) 8
2.1.2 美國能源資訊署(U.S. Energy Information Administration, EIA) 8
2.1.3 經濟部能源局 8
2.1.4 聯合國統計月報(Monthly Bulletin of Statistics Online, MBS) 9
2.1.5 世界銀行(The World Bank) 9
2.1.6 英國石油(BP p.l.c) 9
2.1.7 現有能源資訊平台資料庫版權整理 10
2.1.8 現有能源資訊平台綜合比較 11
2.2 我國能源相關政策 12
2.2.1 再生能源發展條例 12
2.2.2 新能源政策 14
2.2.3 我國與德國之躉購費率比較 16
2.3 資料倉儲 19
2.3.1 資料倉儲概述 19
2.3.2 線上分析處理工具( OLAP) 20
2.3.3 資料倉儲架構 22
2.4 系統動態學 24
2.4.1 系統動態學概述 24
2.4.2 建立因果迴饋環路圖質量率圖之基礎 25
2.4.3 系統動態學於能源領域之應用 26
三、 研究工具與方法 30
3.1 資料倉儲應用設計 30
3.2 資料維度模式設計 31
3.3 建立資料方塊(CUBE) 34
3.4 系統動態學模型建置流程 37
四、 案例研究 39
4.1 系統動態模型參數之資料投入 39
4.2 系統動態學模式建構 41
4.2.1 問題定義與系統描述 41
4.2.2 再生能源太陽光電應用政策因果回饋環路圖 42
4.3 模型信效度驗證 50
4.4 情境模擬與結果闡述 52
4.4.1 情境一:基礎情境 52
4.4.2 情境二:德國遞減式躉購費率 54
4.4.3 情境三:西班牙階梯式躉購費率 55
4.5 情境模擬比較結果闡述與建議 56
五、 結論與建議 60
5.1 結論 60
5.2 限制與未來研究建議 61
六、 參考文獻 62
附錄A 資料檢索語法 68
附錄B SYSTEM DYNAMICS EQUATIONS 69
[1]Alishahi, E., Moghaddam, M. P., and Sheikh-El-Eslami, M. K., 2012, “A system dynamics approach for investigating impacts of incentive mechanisms on wind power investment,” Renewable energy, Vol. 37, No. 1, pp. 310-317.
[2]Aslani, A., Helo, P. and Naaranoja, M., 2014, “Role of renewable energy policies in energy dependency in Finland: System dynamics approach,” Applied Energy, Vol. 113, pp. 758-765.
[3]Balas, Y., and Carpenter, S., 1990, “Philosophical root of model validation: Two paradigms,” System Dynamics Review, Vol. 6, No. 2, pp. 148-166.
[4]BP Global, Accessed: 11/18/2014 [Online]. https://www.bp.com/
[5]BP statistical review of world energy, 2014, Accessed: 07/11/2014 [Online]. Available: http://www.bp.com/content/dam/bp/pdf/Energy-economics/statistical-review-2014/BP-statistical-review-of-world-energy-2014-full-report.pdf.
[6]Campoccia, A., Dusonchet, L., Telaretti, E., and Zizzo, G., 2014, “An analysis of feed’ in tariffs for solar PV in six representative countries of the European Union,” Solar Energy, Vol. 107, pp. 530-542.
[7]Codd, E. F., 1970, “A relational model of data for large shared data banks,” Communications of the ACM, Vol. 13, No. 6, pp. 377-387.
[8]Codd, E. F., Codd, S. B., and Salley, C. T., 1993, “Providing OLAP (on-line analytical processing) to user-analysts: An IT Mandate,” EF Codd and Associates, pp. 1-32.
[9]Dresner, H., Buytendijk, F., Linden, A., Friedman, T., Strange, K. H., Knox, M., and Camm, M., 2002, “The business intelligence competency center: An essential business strategy,” Gartner Strategic Analysis Report.
[10]Fong, W. K., Matsumoto, H., and Lun, Y. F., 2009, “Application of System Dynamics model as decision making tool in urban planning process toward stabilizing carbon dioxide emissions from cities,” Building and Environment, Vol. 44, No. 7, pp. 1528-1537.
[11]Forrester, J. W., 1956, “Dynamic Models of Economic Systems and Industrial Organizations,” System Dynamics Review, Vol. 19, No. 4, pp. 331-345.
[12]Forrester, J. W., 1961, “Industrial dynamics,” Massachusetts Institute of Technology Press.
[13]Forrester, J.W., Senge, P.M., 1980, “Tests for building confidence in system dynamics models,” System Dynamics, North-Holland, New York.
[14]Golfarelli, M., Maio, D., and Rizzi, S., 1998, “The dimensional fact model: a conceptual model for data warehouses,” International Journal of Cooperative Information Systems, Vol. 7, pp. 215-247.
[15]Han, J., and Kamber, M., 2001, “Data mining: concepts and techniques,” Mor-gan Kaufmann Publishers, ISBN: 978-1558604896
[16]Hsu, C. W., 2012, “Using a system dynamics model to assess the effects of capital subsidies and feed-in tariffs on solar PV installations,” Applied Energy, Vol. 100, pp. 205-217.
[17]IEA, 2013, “World Energy Outlook 2013.” Accessed: 07/11/2014 [Online]. Available: http://www.worldenergyoutlook.org/publications/weo-2013/.
[18]IEA, 2014, “World Energy Outlook 2014.” Accessed: 06/11/2015 [Online]. Available: http://www.worldenergyoutlook.org/publications/weo-2014/.
[19]Inmon, W. H., 2005, “Building the Data Warehouse,” John wiley & sons, ISBN: 978-0-7645-9944-6.
[20]International Energy Agency (IEA), 2014, “Statistics”, Accessed: 11/18/2014 [Online]. http://www.iea.org/statistics
[21]Liang, C. Y., and Jorgenson, D. W., 2003, “Effect of energy tax on CO2 emission and economic development of Taiwan, 1999–2020.” Global Warming and the Asian Pacific, 105-130.
[22]Mao, G. Z., Dai, X., Wang, Y., Guo, J. H., Cheng, X., Fang, D. M., Song, X. F., He, Y. Y., and Zhao, P., 2013, “Reducing carbon emissions in China: Industrial structural upgrade based on system dynamics,” Energy Strategy Reviews, Vol. 2, No. 2, pp. 199-204.
[23]Mathew, A. D., and Ma, L., 2007, “Multidimensional schemas for engineering asset management,” In Proceedings World Congress on Engineering Asset Management 2007, Harrogate, England.
[24]Mathew, A. D., Zhang, S., Ma, L., and Hargreaves, D. J., 2006, “A water utility industry conceptual asset management data warehouse model,” In Proceedings the 36th International Conference on Computers and Industrial Engineering, pp. 3788-3798, Howard Hotel, Taipei, Taiwan.
[25]Meadows, D.H., Meadows, D.L., Randers, J., and Behrens III, W.W., 1972, “The limits to growth,” Universe Books.
[26]Monthly Bulletin of Statistics Online, Accessed: 11/18/2014 [Online]. http://unstats.un.org/unsd/mbs/app/DataSearchTable.aspx
[27]Palm, W. J., 2009, “System dynamics,” McGraw-Hill Higher Education.
[28]Peral, J., Ferrández, A., De Gregorio, E., Trujillo, J., Maté, A., and Ferrández, L. J. , 2014, “Enrichment of the phenotypic and genotypic data warehouse analysis using question answering systems to facilitate the decision making process in cereal breeding programs,” Ecological Informatics. Vol. 26, pp. 203–216.
[29]Pokorný, J., and Sokolowsky, P., 1999, “A conceptual modelling perspective for Data Warehouses,” Electronic Business Engineering, pp. 665-684.
[30]Trappey, A. J., Trappey, C., Hsiao, C., Ou, J. J., Li, S., and Chen, K. W., 2012, “An evaluation model for low carbon island policy: The case of Taiwan's green transportation policy,” Energy Policy, Vol. 45, pp. 510-515.
[31]Trappey, A.J.C., Trappey, C.V., Lin, G.Y.P., and Chang, Y.S., 2012, “The analysis of renewable energy policies for the Taiwan Penghu island administrative region,” Renewable and Sustainable Energy Reviews, Vol. 16, No. 1, pp. 958-965.
[32]Trappey, A.J.C., Trappey, C.V., Liu, P.H.Y., Lin, L.C., Ou, J.J.R., 2013, “A Hierarchical Cost Learning Model for Developing Wind Energy Infrastructures,” International Journal of Production Economics, Vol.146, No. 2, pp. 386-391.
[33]U.S. Energy Information Administration (EIA), 2014, “Statistics”, Accessed: 11/18/2014 [Online]. http://www.eia.gov/
[34]Wang, Z., Kuang, J. C., Pang, H. Q., and Huo, Z. L., 2013, “Assessment of Carbon Dioxide Capture and Storage Implementation Scheme based on System Dynamic,” Forum on Science and Technology in China, Vol. 11, pp. 137-143.
[35]Werner, M. and Hermansson, U., 2002, “Integrated utility data warehousing-a prerequisite to keep up with competition on electricity markets,” In Proceedings the International Conference on Power System Management and Control, pp. 130-135, London, UK.
[36]World Bank Group, “Data”, Accessed: 11/18/2014 [Online]. http://data.worldbank.org/
[37]太陽光電資訊網,2014年,「太陽光電發電量計算法」,Accessed: 12/06/2014 [Online]. Available: http://web3.moeaboe.gov.tw/ecw/populace/content/Content.aspx?menu_id=1504
[38]尹相志,2009年,「SQL Server 2008 OLAP 多維度分析」,悅知文化,ISBN: 978-986-6348-04-4。
[39]牛東曉、曹樹華、盧建昌、趙磊,2009年,「電力負荷預測技術及其應用」,中國電力出版社。
[40]王信福,2009年,「建築用太陽光電板饋電價格策略之研究」,碩士論文,國立中央大學營運管理研究所。
[41]行政院,2014年,「新能源政策」,Accessed:11/30/2014. [Online]. Available: http://www.ey.gov.tw/policy4/cp.aspx?n=E4707ED5C6C73F4B。
[42]行政院環境保護署,2015年,「溫室氣體減量及管理法」。
[43]吳書福,2005年,「應用文件分類技術於多維度文件倉儲系統」,碩士論文,國立臺灣大學資訊管理學研究所。
[44]呂雪彗,2015年,「擴大綠電,太陽光電商機4千億」,Accessed: 06/30/2015 [Online]. http://ctee.com.tw/News/Content.aspx?id=630324&yyyymmdd=20150629&f=824f8e78f670b073f546d48c526cc1da&h=db3e29e880ed7546ae33b6d88793e4e0&t=t5d
[45]杜群、廖建凱,2011年,「德國與英國可再生能源法之比較及對我國的啟示」,法學評論,第六期,pp. 75-81。
[46]林傑斌、卓彰賢、張一岑, 2006年,「資料倉儲理論、設計與應用」,網奕資訊股份有限公司。
[47]馬公勉,2011年,「德國再生能源電能躉購機制探討」,Accessed:12/02/2014. [Online]. Available: http://energymonthly.tier.org.tw/outdatecontent.asp?ReportIssue=201102&Page=28。
[48]張宇辰,2014年,「運用系統動態學進行碳稅課徵對太陽光電系統建置與發電成本之評估研究」,碩士論文,國立清華大學工業工程與工程管理學系。
[49]陳崇憲、蘇桓嫻,2010年,「淺談再生能源發展條例立法內容」,能源報導,pp.5-9。
[50]陽光屋頂百萬座計畫辦公室,2013年,[Online]. Available: https://mrpv.org.tw/about.php
[51]楊朝仲、張良正、葉欣誠、陳昶憲、葉昭憲,2007年,「系統動力學思維與應用」,五南圖書出版公司。
[52]經濟能源農業處,2014年,「全球綠色能源發展趨勢」,Accessed: 12/05/2014 [Online]. Available: http://www.ey.gov.tw/policy9/cp.aspx?n=B9C5E550F0D6C668
[53]經濟部,2013年,「財政經濟篇」,行政院公報,第19卷,第229期,pp. 45398-45401。
[54]經濟部能源局,2010年,「再生能源發展條例概要」。
[55]經濟部能源局,2012年,「能源產業技術白皮書」。
[56]經濟部能源局,2013年,「全球能源發展趨勢與我國重要能源課題」。
[57]經濟部,2014年,「中華民國一百零四年度再生能源電能躉購費率及其計算公式」。
[58]經濟部能源局,2014年,「太陽光電、風力發電併進 我國積極推動再生能源」,Accessed: 12/1/2014 [Online]. Available: http://web3.moeaboe.gov.tw/ECW/Mobile/news/News.aspx?kind=1&menu_id=2136&news_id=3488
[59]經濟部能源局,2014年,「能源統計手冊」。
[60]經濟部能源局,2014年,「統計刊物」,Accessed: 11/18/2014 [Online]. http://web3.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=141
[61]農委會,2015年,「申請農業用地作農業設施容許使用審查辦法」。
[62]劉秀容,2012年,「新能源政策下台電公司因應策略」,能源報導。
[63]劉蕙瑜,2013年,「能源階層成本學習曲線-以臺灣風力與太陽光電為例」,碩士論文,國立清華大學工業工程與工程管理學系。
[64]歐文生,2011年,「綠建築就是太陽能建築嗎」,科學發展,第460期,pp. 40-47。
[65]蕭志同、張瑞芬、鐘宛芩、張力元、歐嘉瑞、葉豐銘,2014年,「溫室氣體排放與潛在環境成本效益評估模型:以TFT-LCD產業為例」,臺灣能源期刊,第一卷,第二期,pp. 245-257。
[66]謝邦昌,2014年,「SQL Server資料採礦與商業智慧-適用SQL Server 2014/2012」,碁峰資訊股份有限公司,ISBN: 9789863471394。
[67]蘇懋康,1989年,「系統動力學原理與應用」,上海交通大學出版社。
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *