帳號:guest(18.191.14.196)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許貿凱
作者(外文):Hsu, Mao Kai
論文名稱(中文):製藥業於多功能生產線環境下之連續性批次生產計劃問題:決策模型與實證研究
論文名稱(外文):Campaign Planning for Multi-Purpose Plants of Pharmaceutical Industry: Decision Model and Empirical Study
指導教授(中文):張國浩
謝岳峰
指導教授(外文):Chang, Kuo Hao
Hsieh, Liam Yuehfeng
口試委員(中文):吳建瑋
侯建良
口試委員(外文):Wu, Chien Wei
Hou, Jiang-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:102034510
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:51
中文關鍵詞:連續性批次生產規劃排程多功能生產線批次生產
外文關鍵詞:campaign planningschedulingmulti-purpose plantsbatch production
相關次數:
  • 推薦推薦:0
  • 點閱點閱:473
  • 評分評分:*****
  • 下載下載:36
  • 收藏收藏:0
「連續性批次生產」於化學相關之產業是最基本的生產模式,如製藥業、化妝品相關產業、食品加工業等等。比起其他產業,相對長時間的生產時間與換線(設置、清洗)時間,是這些產業的主要特性。為了盡量最小化換線所帶來大量的產能損失,生產線以連續性批次生產的模式以達到降低換線頻率的效果。另一方面,由於多樣化且部分小量的產品需求,多功能生產線的生產環境因應而生,表示一個生產線必須具備可生產多種產品的能力。而在多功能生產線的生產環境下進行生產,提供了在生產規劃時的彈性空間,但也同時讓排程變得相當複雜,難以決定到底應該將各個產品需求做怎樣的切分,並如何分配所有的連續性批次到哪些多功能生產線下進行生產才為最佳排程。本篇論文特別針對製藥業進行生產排程的研究,並建構一數學與決策模型來描述現實中的狀況並加以求解,最後以一實際的案例來加以驗證。
Abstract
Batch production is highly used in chemical process industries such as pharmaceuticals, cosmetics, food processing, etc. A few typical characteristics common in these industries are the long setup time and the long cleaning time. To minimize the cost and the frequency needed for the changeovers, the plants are operated in campaign mode. However, the products are often sold in small quantities with the fluctuating demands, the multi-purpose plants are preferred. While the multi-purpose plants gains the flexibility for the production planning, it becomes much more complex to decide how to run the plants, when and in what amount of different product should be made. In this paper, we study the planning problem in pharmaceutical industry and build a mathematical and decision model to characterize it. An empirical study is conducted to demonstrate the viability of the proposed model.
目錄
一、緒論 1
1-1 研究背景與重要性 1
1-2 研究動機與目的 3
1-3 論文架構 3
二、文獻探討 5
2-1 連續性批次生產之計劃問題(CPP) 5
2-2 求解方式 5
2-2-1 數學規劃方法 5
2-2-2 離散型數學模型 6
2-2-3 連續型數學模型 6
2-3 模糊邏輯 7
三、問題定義 11
3-1 問題描述 11
3-2 實際生產行為 16
四、決策模型 22
4-1 目標式 24
4-2 分配限制式 26
4-3 排序限制式 26
4-4 生產路徑限制式 27
4-5 換線限制式 28
4-6 需求限制式 29
4-7 模糊推論系統(FIS) 30
五、實證案例 42
5-1 GDS Plan與ADS Plan之比較 42
5-2 實例研究 45
六、結論與未來研究 48
6-1 結論 48
6-2 未來研究 48
參考文獻 50
參考文獻
Dedopoulos, I. T., & Shah, N. (1995). Optimal short-term scheduling of maintenance and production for multipurpose plants. Industrial & Engineering Chemistry Research, 34(1), 192-201.
Floudas, C. A., & Lin, X.-X. (2004). Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review. Computers & Chemical Engineering, 28, 2109-2129.
Floudas, C. A., & Lin, X.-X. (2005). Mixed integer linear programming in process scheduling: modeling, algorithms, and applications. Annals of Operations Research, 139(1), 131-162.
Grunow, M., Günther, H. O., & Lehmann, M. (2002). Campaign planning for multi-stage batch processes in the chemical industry. OR Spectrum, 24(3), 281-314.
Kondili, E., Pantelides, C. C., & Sargent, R. W. H. (1993). A general algorithm for short-term scheduling of batch operations—I. MILP formulation. Computers & Chemical Engineering, 17(2), 211-227.
Kuroda, M., & Wang, Z. (1996). Fuzzy job shop scheduling. International Journal of Production Economics, 44(1), 45-51.
Löhl, T., Schulz, C., & Engell, S. (1998). Sequencing of batch operations for a highly coupled production process: genetic algorithms versus mathematical programming. Computers & Chemical Engineering, 22, 579-585.
Mauderli, A., & Rippin, D. W. T. (1979). Production planning and scheduling for multi-purpose batch chemical plants. Computers & Chemical Engineering, 3(1), 199-206.
Méndez, C. A., Cerdá, J., Grossmann, I. E., Harjunkoski, I., & Fahl, M. (2006). State-of-the-art review of optimization methods for short-term scheduling of batch processes. Computers & Chemical Engineering, 30(6), 913-946.
Méndez, C. A., Henning, G. P., & Cerdá, J. (2001). An MILP continuous-time approach to short-term scheduling of resource-constrained multistage flowshop batch facilities. Computers & Chemical Engineering, 25(4), 701-711.
Ouenniche, J., & Boctor, F. (1998). Sequencing, lot sizing and scheduling of several products in job shops: the common cycle approach. International Journal of Production Research, 36(4), 1125-1140.
Petrovic, S., Fayad, C., Petrovic, D., Burke, E., & Kendall, G. (2008). Fuzzy job shop scheduling with lot-sizing. Annals of Operations Research, 159(1), 275-292.
Rajaram, K., & Karmarkar, U. S. (2004). Campaign planning and scheduling for multiproduct batch operations with applications to the food-processing industry. Manufacturing & Service Operations Management, 6(3), 253-269.
Sakawa, M., & Kubota, R. (2000). Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms. European Journal of Operational Research, 120(2), 393-407.
Sarker, R., & Newton, C. (2002). A genetic algorithm for solving economic lot size scheduling problem. Computers & Industrial Engineering, 42(2), 189-198.
Stefansson, H., Sigmarsdóttir, S., Jenssion, P., & Shah, N. (2011). Discrete and continuous time representations and mathematical models for large production scheduling problems: a case study from the pharmaceutical industry. European Journal of Operational Research, 215, 383-392.
Susarla, N., & Karimi, I. A. (2011). Integrated campaign planning and resource allocation in batch plants. Computers & Chemical Engineering, 35(12), 2990-3001.
Wang, K., Löhl, T., Stobbe, M., & Engell, S. (2000). A genetic algorithm for online-scheduling of a multiproduct polymer batch plant. Computers & Chemical Engineering, 24(2), 393-400.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *